ENTROPY OF SEMICLASSICAL MEASURES

icon

23

pages

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

23

pages

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

ENTROPY OF SEMICLASSICAL MEASURES FOR NONPOSITIVELY CURVED SURFACES GABRIEL RIVIÈRE Abstract. We study the asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface of nonpositive sectional curvature. To do this, we look at se- quences of distributions associated to them and we study the entropic properties of their accumu- lation points, the so-called semiclassical measures. Precisely, we show that the Kolmogorov-Sinai entropy of a semiclassical measure µ for the geodesic flow gt is bounded from below by half of the Ruelle upper bound, i.e. hKS(µ, g) ≥ 1 2 ∫ S?M ?+(?)dµ(?), where ?+(?) is the upper Lyapunov exponent at point ?. The main strategy is the same as in [17] except that we have to deal with weakly chaotic behavior. 1. Introduction Let M be a compact, connected, C∞ riemannian manifold. For all x ? M , T ?xM is endowed with a norm ?.?x given by the metric over M . The geodesic flow gt over T ?M is defined as the Hamiltonian flow corresponding to H(x, ?) := ??? 2 x 2 . This quantity corresponds to the classical kinetic energy in the case of the absence of potential.

  • also ask

  • quantum unique

  • geodesic flow

  • points need

  • flow gt over

  • semiclassical measure

  • measure cannot

  • liouville measure


Voir Alternate Text

Publié par

Nombre de lectures

25

t g
Z
1 +h ( ;g ) ()d ();KS
2 S M
+ ()
1 M C x2 M T Mx
t k:k M g T Mx
2kkxH(x;) := 2
2~ H 2
~
2L (M) ~
0
Z
1 8a2C (T M); (a) = a(x;)d (x;) :=h ; (a) i 2 ;~ ~ ~ ~ L (M)o ~
T M
(a) ~ a ~~
2~ = :~ ~
~! 0 ~
2 t S M :=fkk = 1g g S Mx
S M
( ) S M~ ~!0
Ananoinwhictyshob.measureTheamainwstraUniquetegyshoisthethofeprobabilitsamemeasureasertint[17]onlyexceptofthatmeasurewLeohaasvaeknotowheredtheealnegativwhithLiouvillewtheeaklybci.e.haoticmanifoldsbtropehaevior.Sinai1.thatIntraoductiononlyLettewb[4,egeoa)compact,isconnected,Moreowsemiclassical,thariemannianenmanifold.vFworFallthePreciselydesicmeasures.ertiessemiclassicaldicit,aso-calledthatthevts,thisoinerisdicitendoLiouvillewnotedcurvwithKaenormonp.lationtheu-ofaccume.givortenrestrbi.e.ycthegemetriclimitoNonnenmacvquanerontheirw.fact,Thewithgeow,desicature.osucwofofisertiessicaloer,vthaterispropmeasuretropicthenolmogoroisydenedisastthedesicHamiltoniansemiclassicalothewmanifoldscorrespcurvondingdesictogthestrongstudyoticevw,andofthemandtoitciatedshoassoaldistributionsonenofLyquencesnge.wThistoquanQuantitgyConjecturecorrespwhetherondsistomeasuretheleastclassicalnegativkineticInenergyusedinv-Sinaithetocaseopoficlassicaltheofabsenceatureofparticular,pedotenolmogorotial.tropAsyanpyresultobservheable,athisbquanctedtitgeoyofcancbentreclosequandesicstizedenerviaInpseudoorks,dierenandtialh,calculuseandbtheenquansemiclassicaltumgivop1eratorresultcooutrosorespondinginstancetoese-theisofathoksequencelodistributionewwherecalledwsemiclas-ismeasure.propvortionalonetowstheaPlancmeasurekaconstanytonatnedKthis,v-SinaiistroptheofLaplacehBeltramiinoparianeunderrgeoaotaoronactingforon.dooroofTeature.ature,curvgeo.oOuronmaineoconcernsatisesincthisaapropr(Anosotipropcleywillergobyethetomeasure)uppaspconsequence,24,canThiseiswnwnalmostthelatsequencesconexpergeapunotheermeasuretumvdicittopropLiouvilleyonAcstudy[21,the7].asymptoticphenomenonbknoehaasvior,quanasergosectionalytendsertto.emain,halleofconcerningtresultheouldfolloewinganswsequencetheoftumdistrEriobuyti[18],onsdetermine:theositivmeasurenonptheofsemiclassicalsurfaceornian(atRiemanforcompactofaeofature).case[2],thetharamanntheiolmogoroLaplacianentheyofderivnctionspruertiesfsemeigenmeasuresofmanifoldsisnegativertiescurvop1prInasymptoticshethewstudythateKWv-ct.enAbstrayRIVI?REanGABRIELsemiclassicalSisCEositivAThisSURFimpliesOptVEDsuppCURofYsemiclassicalELcannotVeNONPOSITIiORtoFclosedMEASURESdesic,SEMICLASSICALeigenfunctionsOFtheOPYaplacianENTRannotwhereoncOpatebonoundeddfromobinishighagyelo.-pseudosubsequendierenwtialwithophereratorKofcsymmorebtitativollower[8]oundsandthei.e.tropound,ofsatisesmeasuresbereerenupp3].RuelleIntheherofwhalfabymanifoldsbAnAnvaccumdesiculationopforoinmanifoldstnegativ(ascurvw1ot t(g ) (g ) t t


Z X
+h ( ;g ) ()d ()KS j
S M j

+ t (S M;g ;)j

Z d 1X (d 1)max+
h ( ;g ) ()d () :KS j 2S M j=1
1 t := lim log sup jd gjmax t! 1 2S Mt
+j
d 1
2
max

Z d 1X1 +
h ( ;g ) ()d ():KS j2 S M j=1
1M C

Z
1 +h ( ;g ) ()d ();KS
2 S M
+h ( ;g ) ()KS

1
U
theqsualeditourysuppifeigenfunctionsandanonlydifKolmoorquasimoismeasuretheouldLiouvillesurfmeasureertiesinytheandcasetoofLyapunovanunstableAnosotumvsoywbut[15].ationInofththiseRegardingpreviousatureinequaliteye,nonpthemeFiw.standardotropdenotedInthecalpinequalitositiv[ekLycapunoofvvexpyonenotsyofWthisistotheectInrespthenwithenofnegativyandcomplexitnonpthebsul[6].folloRegardingLtheseact,propriemannianerties,titheemain(2)resulttofthat,Ananoftharaman,RecallKopyoiscphshoandyNonnenmeacehercoherenwyasthetocitshoandwgeneralizedthat,sequencesfortrateaensemiclassical)measurereononholdsanSoAtlynonoqstoevonmanifold,whetheronedichaswtcurvestimagenthatlarger,knomeasuretheretvariansurfacesvcurv-inproanicetosurfacesandew11],oclearaetocaniatedincwassoTheoremerebcumonnentheeegativseecurvaturnonnw:asemiclassicise.Itdesicdenitions).Landvdetailsanore[19]wheresystemsmeforthatBisendixov-Sinaiappdorlarge[23]upp(seeonentymeasuretropthisenthatmetric)ofcalledass(alsocannotv-Sinaitomogorodesics.olthatKisthewithoutconstructedab.ishetheofmaximalErgoexpansionforrateofofprotheforgeoydesicconstructoquasimowcandatthesurfacefactsthefewergoathat'sinareentheOurpenositivsemiclassicalesequencesLytheapunotvareexprenoneninequalittsen[6].generalizedCompareddes)withetheDonnelly'soriginalcanresultlastfromthe[2],manifold:thisknoineLiouvilleqisualinottdesicyagivositiveresifanofexplicceitiouvillelobwresulterisbanounddenseonrthesubsetenoftropeyature).ofouraofsemicthelassicalpropmeasure.ofFoforositivinstance,curvfor[20,manifoldsitoecamefthatcronstantsnegativtebcurvadaptedature,thethiswingloaw:er1.1.betoundbcanabompecrctee,written(1)assurfacrecallofusositiveLetc.onalHoewletevber,aitalcanasurtuThen,rnooutgeothatundery.measuretroparianisnayvforeryassertslRuelleargeduequandynamicaltitwherytheoremandainalsothis.case,thethegorpreviousentrloanwyerenbhasoundthecanerbexpeatnegativointe.(whicparticular,hresultwwsouldtheimplyortthatanitsemiclisianmeasureemptbyreducedresult).closedComgeobiningWtheseunderlinetourwyoalsoobservtatitheonsdes[4],btheDonnellyyInw9],ereconsideredleadquestiontoQuanformUniqueulateditheyconjecturepacthat,etsfeigenfunctionsohervanthatythissemiclassicalquestion,measureouenan,exceptionaloneofhasdev-Sinaithateoncenwithonexample,partsathemeasure(evcaifrLiouvilleolmogoroisriedicKanddhabeyparticula1.1.zeroRIVI?REtropG..atheoremclosedthegeotrop2ofdesicmeasureswillforhaofvofeLaplacian.enthetropwysituationszeroslighTheydieatlsoouraskyedtheabtropout(ifthetoextensionuasimoofwthisbconjectureconsistentowithmanifoldsconstruction.withoutecmakonjaugaobservtoneassumptionsptheoinittsnot[4].wnIntheamearecenurewhilergooforositivforLiouvillegeosucothatonwsurfaceerenonpableetoatupro.vfact,ethethatustheirthecoanjisethancture,holdstheforestanwnyinsurfacedirectionwiththatanexistsAnosoopvandgeoindesicaoiwt(forinstancetpweorkmeasure[17],hweL gjU jU
uU ()
t (g )t
S M
Z T1+ u s ; () = lim U (g )ds;
T!+1T 0
+ ()
Z
uh ( ;g ) U ()d ():KS
S M
Z
1 uh ( ;g ) U ()d ():KS
2 S M
uU ()
thebilliwardsthe.[17]Ourfoliationspurptheoseallinlothisitarticle.isltoatprotionveethetheoremconstruction1.1.eOuroinstrategymainwillprecisebs.erthewillswillathmecrucialasolmogoroinme[17]for(and(3)alsoe[this4])losoerywhere).itextendisoprobablyofbtinesectiontositivtetorpro(andveasier)lforprotheneereaderthetoofharesultveestrategya,go[4]ocdadvisorunderstandingandofurfacetheoutmethofordsoundfromhathesettvwisoinreferencesbwhnotecouldreethesurfacesgeomethesetrainicecpsituationisisthesimpler.theWwilleonwillandfowcusproonthethe4]mainvdierencewhatsinandwreferethelemmasreadehretost[section17,preci4]Then,forhothebdetailssurfacesofuresevfolloeraltolemmas.quanTheendix,crucialquanobsabetroprvIationncerelyisforthatueastoinelythealsoAnosopv2case,[11surfacesls.ofononperositievterestingeouldcurv[14],aturemainhatagevformehacinontinuousofstableeandisunstableerywherefmostoliationsemark.andasknoouldcossibleonjugateresultpconjugateoInintsal.vTheseandproptertiesertieswnoerets).atultthetheheartyofe,theOrganizationproicle.ofswine[4,ey3,of17]curvandghwropewillwillevwerirewritingfofyfromthatoevbenlongifsimilartheaspropadyertieseofwthesewillstable/unstabletodirectionsforareofwweakpreciselyeroinfortosurfacesdieofdierennonpgesost.iwtivweecurvproature,sectiontheywillarethesucien[4]tadaptedtosettinganswnonpearInthewquestiontheofinAnanetharaman-Nonnenmaconherpressures.inthethisewresultseaklypressurecsomehaoticthesSinaie.twledgementiouldng.sInm[4Anan,tro-3,this17],tiothereencouragingwtheasnonpaeddynamical.quanhetityydiscussionswhicsubheweras20cruciallydetaused:astrhefunstablebJacobianwofathevgeotodesicinobw.wInithefromcaseTheofadasurfacesanofofnonpnewositivulationetcurvtature,functionothentegralethecanwinrtrooundducedenedanvanalogue(andofalit.evThisRquanOnetitalsoywhethercomeswfrombthepsttoudythisoftoJacwithoutobipeldsts.andfact,issurfacescalledsthehaunstableeRiccatistablesolutionunstableorwiFhergopropdic[20](andnotcourseanconjugate[5]oinatThepdict,yethatnotconanuitwofyregardingescapingdicultsystems.ishaotictruecymore[20].andInthistheoincasewofdosurfacesseewithoutyconjugateapofointhists,yF1.2.rofeartireInand2,Ma??ehagivvaesurvsho2wnsurfacesthatnonpthisequanaturetithighliytisprelertiesatedetoneedthemakupptheerofLyorkapunoAsvallexpdetailsonenthetofsat[17,pwoinutdeaklye[12].eryInandfact,eryfortoanwyalwefordoneresultthesethisarofier-inorks,vearianrefertreaderprobabilitthymmeasuretheonofsanaloguesomeanandobtaine,explainonewhichaspcouldtsa.e.donebwhethermowingdknotheoftquestionatheofraisesargumenmeasuresInmiclassical3,eesdraofaystropoutlineenthetheof.onint4,ulesexplainrewthismainoffromextensioncanwhereeThein[6].etoofectofrespositiviscurvthetupp.esecr5,Lyeapunowvsameexpaso[17]nderiveanestimatettheattumpFinallyoinintappwithw.recThankssometoonthetumBirkhofromergoanddicfactstheorem,outtheKRuellevinequalitenyycanAbknoets.thenwrewrittenlikastofolloiws:thankdicyergoNalinictharamanisinmeasureducingLiouvilletotheqofsonnnforameinstextendsretulrestrictifromtheto3ositivMEASUREScurvLASSICALsMICsSEIOFthankOPYrENTRmanAndhelalso,fultheablothiswject.erWbreferoundreadoftotheorem,1.1]canmorebierewritten3
M
: S M ! M
(x;) := x V = (x;) d
1 S Mx
Z 2 T S M
0c(t) = (a(t);b(t)) t2 ( ; ) S M c(0) = c (0) =Z
H K (Z) =r 0 b(0) =r b(0) a (0) d (Z)
r X ()H
2
T S M =H V
S M 18
= (x;)2S M X;Y 2T S M
hX;Yi :=g (d (X);d (Y )) +g (K (X);K (Y )); x x
g x Mx
M S M

0 0J"(t) +R( (t);J(t)) (t) = 0;
0R(X;Y )Z X Y Z J (t) =
r 0 J(t) (t)
1C c : [a;b]!M s ( ; )s
@c =c Y (t) = (c (t))0 s js=0@s
2s7!c (t) c M C Y (t)s
c Y (t)
0 0c 8s2 ( ; ) c M (t) t (t)s

(V;W ) T S M H V

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text