Diophantine approximation and transcendence

icon

44

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

44

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Combinatorics, Automata and Number Theory CANT Edited by Valerie Berthe LIRMM - Universite Montpelier II - CNRS UMR 5506 161 rue Ada, F-34392 Montpellier Cedex 5, France Michel Rigo Universite de Liege, Institut de Mathematiques Grande Traverse 12 (B 37), B-4000 Liege, Belgium

  • simultaneous diophantine

  • thue-siegel-roth- schmidt method

  • real numbers

  • universite de lyon

  • infinite string

  • unique infinite

  • thue-morse word

  • diophantine approximation


Voir Alternate Text

Publié par

Nombre de lectures

12

Langue

English

Combinatorics,Automata

andNumberTheory

TNAC

Editedby
Vale´rieBerthe´
LIRMM-Universite´MontpelierII-CNRSUMR5506
161rueAda,F-34392MontpellierCedex5,France

MichelRigo
GrUannidveerTsritae´vedreseLi1e`2ge(,BIn3s7t)i,tuBt-d4e000MaLtihe`e´gem,atBiqelugeisum

8TranscendenceandDiophantine
approximation
BorisAdamczewski
CNRS,Universite´deLyon,Universite´Lyon1,InstitutCamilleJordan,
43boulevarddu11novembre1918,F-69622Villeurbannecedex,France
YannBugeaud
IRMA-Universite´deStrasbourg-Mathe´matiques-CNRSUMR7501
7rueRene´Descartes,F-67084Strasbourgcedex,France.
Theaimofthischapteristopresentseveralnumber-theoreticproblemsthat
revealafruitfulinterplaybetweencombinatoricsonwordsandDiophantine
approximation.FiniteandinfinitewordsoccurnaturallyinDiophantine
approximationwhenweconsidertheexpansionofarealnumberinaninte-
gerbase
b
oritscontinuedfractionexpansion.Conversely,withaninfinite
word
a
onthefinitealphabet
{
0
,
1
,...,b
!
1
}
weassociatetherealnumber
!
a
whosebase-
b
expansionisgivenby
a
.Aswell,withaninfiniteword
a
ontheinfinitealphabet
{
1
,
2
,
3
,...
}
,weassociatetherealnumber
"
a
whose
continuedfractionexpansionisgivenby
a
.Itturnsoutthat,iftheword
a
enjoyscertaincombinatorialpropertiesinvolvingrepetitiveorsymmetric
patterns,thenthisgivesinterestinginformationonthearithmeticalnature
andontheDiophantinepropertiesoftherealnumbers
!
a
and
"
a
.
Weillustrateourresultsbyconsideringtherealnumbersassociatedwith
twoclassicalinfinitewords,the
Thue-Morseword
andthe
Fibonacciword
,
seeExample1.2.21and1.2.22.Thereareseveralwaystodefinethem.Here,
weemphasizethefactthattheyarefixedpointsofmorphisms.
Considerthemorphism
#
definedonthesetofwordsonthealphabet
{
0
,
1
}
by
#
(0)=01and
#
(1)=0.Then,wehave
#
2
(0)=010
,
#
3
(0)=
01001
,
#
4
(0)=01001010,andthesequence(
#
k
(0))
k
!
0
convergestothe
Fibonacciword
f
=010010100100101001010
∙∙∙
.
(8.1)
Considerthemorphism
$
definedoverthesamealphabetby
$
(0)=01
and
$
(1)=10.Then,wehave
$
2
(0)=0110
,
$
3
(0)=01101001,andthe
sequence(
$
k
(0))
k
!
0
convergestotheThue-Morseword
t
=011010011001011010010
∙∙∙
.
(8.2)
Forevery
n
"
1,wedenoteby
f
n
the
n
thletterof
f
andby
t
n
the
n
th
424

TranscendenceandDiophantineapproximation
425
letterof
t
.Foraninteger
b
"
2,weset
!
f
=
f
nn
!b1n!dna!
t
=
t
n
.
!nb1n!WefurtherdefineFibonacciandThue-Morsecontinuedfractions,but,since
0cannotbeapartialquotient,wehavetowriteourwordsonanother
alphabetthan
{
0
,
1
}
.Wetaketwodistinctpositiveintegers
a
and
b
,set
f
n
"
=
a
if
f
n
=0and
f
n
"
=
b
otherwise,and
t
"
n
=
a
if
t
n
=0and
t
"
n
=
b
otherwise.Then,wedefine
"
f
!
=[
a,b,a,a,b,a,b,a,...
]=[
f
1
"
,f
2
"
,f
3
"
,f
4
"
,...
]
dna"
t
!
=[
a,b,b,a,b,a,a,b,...
]=[
t
"
1
,t
"
2
,t
"
3
,t
"
4
,...
]
.
Amongotherresults,wewillexplainhowtocombinecombinatorialprop-
ertiesoftheFibonacciandThue-MorsewordswiththeThue-Siegel-Roth-
Schmidtmethodtoprovethatallthesenumbersaretranscendental.Be-
yondtranscendence,wewillshowthattheFibonaccicontinuedfractions
satisfyaspectacularpropertiesregardingaclassicalprobleminDiophan-
tineapproximation:theexistenceofrealnumbers
!
withthepropertythat
!
and
!
2
areuniformlysimultaneouslyverywellapproximablebyrational
numbersofthesamedenominator.Wewillalsodescribean
adhoc
con-
structiontoobtainexplicitexamplesofpairsofrealnumbersthatsatisfy
theLittlewoodconjecture,whichisamajoropenprobleminsimultaneous
Diophantineapproximation.
WeusethefollowingconventionthroughoutthisChapter.TheGreek
letter
!
standsforarealnumbergivenbyitsbase-
b
expansion,where
b
alwaysmeansanintegeratleastequalto2.TheGreekletter
"
stands
forarealnumbergivenbyitscontinuedfractionexpansion.Ifitspartial
quotientstakeonlytwodi
!
erentvalues,thesearedenotedby
a
and
b
,which
representdistinctpositiveintegers(here,
b
isnotassumedtobeatleast2).
Theresultspresentedinthischapterarenotthemostgeneralstatements
thatcanbeestablishedbythemethodsdescribedhere.Ourgoalisnotto
makeanexhaustivereviewofthestate-of-the-art,butrathertoemphasize
theideasused.Theinterestedreaderisdirectedtotheoriginalpapers.

426
B.Adamczewski,Y.Bugeaud
8.1Theexpansionofalgebraicnumbersinanintegerbase
Throughoutthepresentsection,
b
alwaysdenotesanintegeratleastequal
to2and
!
isarealnumberwith0
<
!
<
1.Recallthatthereexistsa
uniqueinfiniteword
a
=
a
1
a
2
∙∙∙
definedoverthefiniteset
{
0
,
1
,...,b
!
1
}
,
calledthe
base-
b
expansion
of
!
,suchthat
an!
=
b
n
:=0
.a
1
a
2
∙∙∙
,
(8.3)
!1n!withtheadditionalconditionthat
a
doesnotterminateinaninfinitestring
ofthedigit
b
!
1.Obviously,
a
dependson
!
and
b
,butwechoosenotto
indicatethisdependence.
Forinstance,inbase10,wehave
3
/
7=0
.
(428571)
!
dna%
!
3=0
.
314159265358979323846264338327
∙∙∙
.
Conversely,if
a
=
a
1
a
2
∙∙∙
isaninfiniteworddefinedoverthefinite
alphabet
{
0
,
1
,...,b
!
1
}
suchthat
a
doesnotterminateinaninfinite
stringofthedigit
b
!
1,thereexistsauniquerealnumber,denotedby
!
a
,
suchthat
!
a
:=0
.a
1
a
2
∙∙∙
.
Thisnotationdoesnotindicateinwhichbase
!
a
iswritten.However,this
willbeclearfromthecontextandshouldnotcauseanydi
"
culty.
Inthesequel,wewillalsosometimesmakeaslightabuseofnotationand,
givenaninfiniteword
a
definedoverthefinitealphabet
{
0
,
1
,...,b
!
1
}
that
couldendinaninfinitestringof
b
!
1,wewillwrite
0
.a
1
a
2
∙∙∙
todenotetheinfinitesum
an.!nb1n!Werecallthefollowingfundamentalresultthatcanbefoundintheclas-
sicaltextbook(HardyandWright1985).
Theorem8.1.1
Arealnumberisrationalif,andonlyif,itsbase-
b
expan-
sioniseventuallyperiodic.

TranscendenceandDiophantineapproximation
427
8.1.1Normalnumbersandalgebraicnumbers
Atthebeginningofthe20thcentury,E´mileBorel(Borel1909)investigated
thefollowingquestion:
Howdoesthedecimalexpansionofarandomlychosenrealnumberlook
?ekilThisquestionleadstothenotionofnormality.
Definition8.1.2
Arealnumber
!
iscalled
normaltobase
b
if,forany
positiveinteger
n
,eachoneofthe
b
n
wordsoflength
n
onthealphabet
{
0
,
1
,...,b
!
1
}
occursinthebase-
b
expansionof
!
withthesamefrequency
1
/b
n
.Arealnumberiscalleda
normalnumber
ifitisnormaltoevery
integerbase.
E´.Borel(Borel1909)provedthefollowingfundamentalresultregarding
normalnumbers.
Theorem8.1.3
ThesetofnormalnumbershasfullLebesguemeasure.
Someexplicitexamplesofrealnumbersthatarenormaltoagivenbase
areknownforalongtime.Forinstance,thenumber
0
.
123456789101112131415
∙∙∙
,
(8.4)
whosesequenceofdigitsistheconcatenationofthesequenceofallpositive
integerswritteninbase10andrangedinincreasingorder,wasprovedtobe
normaltobase10in1933byD.G.Champernowne(Champernowne1933).
Incontrast,todecidewhetheraspecificnumber,like
e
,
%
or
#2=1
.
414213562373095048801688724209
∙∙∙
,
isorisnotanormalnumberremainsachallengingopenproblem.Inthis
direction,thefollowingconjectureiswidelybelievedtobetrue.
Conjecture8.1.4
Everyrealirrationalalgebraicnumberisanormalnum-
.reb

8.1.2Complexityofrealnumbers
Conjecture8.1.4isreputedtobeoutofreach.Wewillthusfocusour
attent

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text