DES EDP AU CALCUL SCIENTIFIQUE PARIS JUILLET

icon

18

pages

icon

Documents

2007

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

18

pages

icon

Documents

2007

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

& $ % DES EDP AU CALCUL SCIENTIFIQUE, PARIS, 2-6 JUILLET 2007 Congrès en l'honneur de Lu Tartar ON THE FIELD-MATTER INTERACTION IN ELECTRODYNAMICS: A WEAK CONVERGENCE APPROACH YANN BRENIER CNRS Université de Ni e-Sophia Antipolis FR 2800, (Visiting Institut für Angewandte Mathematik, Universität Bonn) Email: breniermath.uni e.fr June 29, 2007 1

  • al linear

  • system viewed

  • linear

  • congrès en l'honneur de lu tartar

  • ontinuum physi


Voir icon arrow

Publié par

Publié le

01 juillet 2007

Nombre de lectures

17

' $
& %
AnfrAngewYAPPRDESUnivEDP2800,Aersit?tU1CALCULASCIENTIFIQUE,BRENIERPdeARIS,olis2-6InstitutJUILLETMathematik,2007Email:Congr?s29,enGENCEl'honneurOdeCHANNTCNRSartarersit?ONTHEtipFIELD-MAFRTTER(VisitingINTERAf?rCTIONandteINUnivELECTRBonn)ODYNAMICS:JuneA2007WEAKCONVER' $
& %
TTERCETECEEXAMPLESSUMMARALGEBRAICYGNETICVINARIAANDTIONALTWAND2007HAMILOLD:TONIANELECTRSETTINGSSEPFINTERAORSPNON-LINEARINTEGRABILITY,E-MASOLUTIONSGNETISMONETHESPMAXWELLJuneANDTHEBORN-INFELDMANIFMODELSMATHEANDBORN-INFELDOMASYSTEMFIELDVIEWEDARAASANDTHECTRESTRICTIONONEOFAANDIMENSION:ASINGULARITIESUGMENTEDVISCOSITYSYSTEMNUMERICALTOINANANDALGEBRAICOMANIFAOLDDIMENSIONSWEAK29,CLOSURE2OF' $
3
(E(t,x),B(t,x)) x∈R
∂ B+∇×E =0, ∇B =0,
t
Z
d
{L(E(t,x)+ε η(t,x),B(t,x)+ε β(t,x))−L(E(t,x),B(t,x))}dxdt =0,

ε=0
(η,β)
L
6
(E,B)∈R , E (E,B)
2 2
E −B EB
1
2 2
L(E,B)= (E −B ),
2
& %
givstationaryonlyactiondepwherewitherturbationthetsdierentialThets.E-MAHereontial(homogeneousthenormalized),ell'seldsJunemo2007bisTIONALaORgivWenendingrealthatfunctionpdierenfollothroughtotosubortedandsupp,.allsimplestfordel,forentheywingVAARIAvSETTINGexFinNON-LINEARsatisfyGNETISM,andofleadsokthelolineareanddenesMaxwtheequations.mo29,del3and' $
3 3
h(D,B)= sup ED−L(E,B), ∀D∈R , ∀B∈R
3
E∈R

∂ B+∇×(h (D,B))=0, ∇B =0,
t
D

∂ D−∇×(h (D,B))=0, ∇D =0,
t
B
∂ (h(D,B))+∇(D×B)=0,
t
∂ (D×B)+∇(Π(D,B))=0,
t
Π
& %
yTONIANolicFORMULAuumTIONequations,InC.trows2005,thedelspartial29,Legendre.transform:HypWationegetysics,HAMILSerre,erbthenonlinear'HamiltonianMaxwform'(2004).additionale'energy-momenexplicitlytheorem)ether'sDafermos,Noerbyblavidedin(protinwsphlaSpringerationD.Hyptum'olicitTHEofthewithmowhereoftheell'suxARMAtheJune42007b' $
1 1
2 2 2 2
L(E,B)= (E −B ), h(D,B)= (D +B ),
2 2
q q
2 2 2 2 2 2
L(E,B) =− 1−E +B −(EB) , h(D,B) = 1+D +B +(D×B)
BORN−INFELD system
B,D << 1
B =0
p
2
L(E,0) =− 1−E , ∇×E =0.
E 1
−15
10
& %
scalingBORN-INFELD'S.ANDwhereMAXWELL,MODELSoriginalinTheto(cf.Ann.H.ysicaloincar?,ellsimplestJunea2007spisiseedvProeredenasytheappropriatelo(WithwtseldwnlimitasofationthetheoryBIspiritsystem,relativitasspthewtheMaxwlighell'sandequations.RoA.isInbthebinphnon-linearunits.Born'ssuggestedBI,Maxwwdogivtomodel,yThisemeters.)getwinBorn's1934motivbforynon-linearMax,BorntheandofLeopecialoldyInfeld,noiseedobtainedallowithedondssptoofthet.toBornleadsInfeld,andLondon,y144SoBorn,eldAThen,(1934),theelectricInst..PThe1937)Maxw29,ell5system' $
D
∂ B+∇×(B×v+ ) =0, ∇B =0,
t
h
B
∂ D+∇×(D×v− ) =0, ∇D =0,
t
h
q
D×B
2 2 2
h = 1+D +B +(D×B) , v = .
h
∂ h+∇(hv) =0,
t
h
D,B (0,0)
& %
wn29,'en6systemeabbeensystemproBorn-InfeldvfunctionenonlytoofexistwhereforvidessmallylohvinitialtheSYSTEMbayoChaeisandThisHuh,reads:J.proMath.anPhtropys.function'2003.whicTheisadditionalexationoflaunknowTheBoillat,BORN-INFELDBoillat,inneighorhoCIMEdLax,THE1640.hyperb.olicG.andinlinearlyDafermos,degenerate.Liu,Global1994-SpringersmonotesothJunesolutions2007hav' $
10×10
augmented adding 4
B⊗B+D⊗D 1
∂ (hv)+∇(hv⊗v− )=∇( ), ∂ h+∇(hv) =0
t t
h h
6
D
∂ B+∇×(B×v+ ) =0, ∇B =0,
t
h
B
∂ D+∇×(D×v− ) =0, ∇D =0,
t
h
DISREGARDING
q
D×B
2 2 2
h = 1+D +B +(D×B) , v = ,
h
6 BI MANIFOLD.
& %
BI7othbtsTOthetum'originalwhile(ABI)ISBISYSTEMevationolutiontheBORN-INFELDBIequationsorofTHEUGMENTEDEQUIVmadeAisTO(ABI)dimensionalsystemBorn-Infeld'energy-momentedyAsystemaugmenoriginalTheFSYSTEMsmoTHEsolutions,29,BISYSTEMws:JUSTMANIFALENTTHEh.UGMENTEDh.RESTRICTED2004THEthelaOLD.toYB,theRat.whicAnalysishJunedene2007the' $
10×10
D
∂ B+∇×(B×v+ ) =0, ∇B =0,
t
h
B
∂ D+∇×(D×v− ) =0, ∇D =0,
t
h
B⊗B+D⊗D 1
∂ (hv)+∇(hv⊗v− ) =∇( ), ∂ h+∇(hv) =0,
t t
h h
2 2 2
1+D +B +(hv)
η(h,hv,D,B) = ,
h
classical
(t,x)→ (t,x+Ut), (h,v,D,B)→ (h,v−U,D,B),
3
U∈R
& %
OFequationseedMHD(augmen!eBIGalileanyin8vOPERariance:AlikTheoksforandtfunction.systemy29,enjoysSOMEtropPRenTIESexTHEvUGMENTEDSYSTEMaABIastedadmitsananddegenerate,splinearlyBorn-Infeld)olic,erbItloJuneis2007hyp' $
∂ b+(v∇)b = (b∇)v−τ∇×d, ∂ d+(v∇)d = (d∇)v+τ∇×b,
t t
∂ τ +(v∇)τ = τ∇v, ∂ v+(v∇)v = (b∇)b+(d∇)d+τ∇τ,
t t
1 B D
τ = , b = , d = .
h h h
τ τ <0 τ =0
h∼∞
2 2 2 2
τ >0, τ +v +b +d =1, τv =d×b.
& %
NON-CONSER).Born-InfeldItoth.isellusefulSYSTEMforeabrigorousJuneasymptoticVERSIONanalysisareoftheariables,highiseldforregimesandaluesMath.vArealTHE,solutionsALLsmo(includingInYB,ativen-anvong,theationManifoldparticle,denedandy:branedenedfromwBorn-Infeld2007y),ysics,Electromagnetism,ofstringsTHEVatTIVEleastOFwhenABIthewherelimitwhichWYShalloDerivw-wofaterstringMHDmemequationsmotions(withoutthegravitJ.ThisPhsystem2005is29,9' $
10×10 linearly degenerate

L
CONVEXHULL BI−MANIFOLD
natural
∇D =∇B = 0
q
2 2 2
h≥ 1+D +B +(hv) +2|D×B−hv|.
& %
stablethevproblemvis(Thisoptialentakinwhigheronedimensions.)matterThusingus,mtheandhasisysystemonlyBorn-Infeld)solutionstedounded(augmentheABItsThebOLDeMANIFbofintheThisBIhWEAKdimensionTHEANDSerre:CTIONstillINTERAvTTERendingFIELD-MAsmoTHEinwhileuniformlylimitslemma,ofdierenJune2007theytoenbproebtheusteakewenergence:tovt.)eakexwullAfull'div-curl'andasSerre,bBorn-InfeldD.elds,temp.solutions.371,areMath.ariableattainablespacebonydepothofoftheunderoriginalBIbsystem.of(AsaonD.Brenier'shremarksetY.forintotialelectro-magneticContoMath.,theAmer.ABISosystem,2005.29,b10e

Voir icon more
Alternate Text