Deforming the Lie algebra of vector fields on S1 inside the Lie algebra of

icon

19

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

19

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

ar X iv :m at h/ 98 12 07 4v 1 [m ath .Q A] 1 1 D ec 19 98 Deforming the Lie algebra of vector fields on S1 inside the Lie algebra of pseudodifferential symbols on S1 V. Ovsienko and C. Roger Dmitri Borisoviqu Fuksu po sluqa xestidestileti Abstract We classify nontrivial deformations of the standard embedding of the Lie algebra Vect(S1) of smooth vector fields on the circle, into the Lie alge- bra ?D(S1) of pseudodifferential symbols on S1. This approach leads to deformations of the central charge induced on Vect(S1) by the canonical cen- tral extension of ?D(S1). As a result we obtain a quantized version of the second Bernoulli polynomial. 1 Introduction The classical deformation theory usually deals with formal deformations of associa- tive (and Lie) algebras. Another part of this theory which studies deformations of Lie algebra homomorphisms, is less known. It should be stressed, however, that, sometimes, this second view point is more interesting and leads to richer results. The Lie algebra of vector fields on the circle Vect(S1) gives an example when such situation occurs. It is well-known that Vect(S1) itself is rigid, but it has many interesting embeddings to other remarkable Lie algebras that can be nontrivially deformed.

  • semi-classical limits

  • formal deformations

  • lie algebra

  • vect

  • deformation πt

  • ?d

  • π˜t contracts

  • π˜t

  • poisson algebra


Voir icon arrow

Publié par

Langue

English

DeformingtheLiealgebraofvectorfieldsonS1insidetheLiealgebraofpseudodifferentialsymbolsonS1V.OvsienkoandC.RogerDmitriBorisoviquFuksuposluqaxestidestiletiAbstractWeclassifynontrivialdeformationsofthestandardembeddingoftheLiealgebraVect(S1)ofsmoothvectorfieldsonthecircle,intotheLiealge-braΨD(S1)ofpseudodifferentialsymbolsonS1.ThisapproachleadstodeformationsofthecentralchargeinducedonVect(S1)bythecanonicalcen-tralextensionofΨD(S1).AsaresultweobtainaquantizedversionofthesecondBernoullipolynomial.1IntroductionTheclassicaldeformationtheoryusuallydealswithformaldeformationsofassocia-tive(andLie)algebras.AnotherpartofthistheorywhichstudiesdeformationsofLiealgebrahomomorphisms,islessknown.Itshouldbestressed,however,that,sometimes,thissecondviewpointismoreinterestingandleadstoricherresults.TheLiealgebraofvectorfieldsonthecircleVect(S1)givesanexamplewhensuchsituationoccurs.Itiswell-knownthatVect(S1)itselfisrigid,butithasmanyinterestingembeddingstootherremarkableLiealgebrasthatcanbenontriviallydeformed.TheaimofthisarticleistostudytheembeddingsofVect(S1)intotheLiealgebraofpseudodifferentialsymbolsΨD(S1).Wewillclassifythedeformationsofthestandardembeddingwhichpolynomiallydependontheparametersofdeformation.Itturnsoutthatthereexistsathree-parameterfamilyofnontrivialdeformations.Wecomputeauniversalexplicitformuladescribingthisfamily.Thisworkcanbeconsideredasthesecondpartof[12]wheredeformationsofVect(S1)insidethePoissonLiealgebraofLaurentseriesonTS1hasbeenclassi-fied.ThelatterLiealgebracanbeconsideredasthesemi-classicallimitofΨD(S1),sothepresentarticleis,insomesense,thequantumversionof[12].
Voir icon more
Alternate Text