Decidability of Presburger arithmetic

icon

5

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

5

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Decidability of Presburger arithmetic Vincent Thomas 16th January 2006 Contents 1 Decidability 1 2 Presburger arithmetic 2 2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Early results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.3 Elimination of quantifiers . . . . . . . . . . . . . . . . . . . . . . 3 Introduction When given a theory, an important question is to know if it is decidable. The famous theorem of Godel shows in many cases, it is not. But sometimes, we have a positive answer. It is precisely the case of Presburger arithmetic. In all what follows, we use the first order classic logic. 1 Decidability Definition 1 A theory T over a language L is called decidable if there is an algorithm which answers to the question : T F ? for any formula F over L. A theory T over a language L is called recursive if there is an algorithm which answers to the question : F ? T ? The main tool we will use to prove the wanted result is the elimination of quan- tifiers.

  • induction over

  • without quantifier

  • called decidable

  • f1 ?

  • first result

  • ?xf ?

  • early results

  • lemma hypothesis

  • need


Voir icon arrow

Publié par

Langue

English

T L
T ‘F F L
T L
F ∈T
T L
F L
G T ‘F ↔G
T
F[x,x ,...,x ] G[x ,...,x ]1 n 1 n
T ‘∀x ,...,x ,{∃xF ↔G}1 n
,.e...is.elimination.2.to.admits...quantiers.arithmetic.al.question.pro.A.if...to.ory.formula.ther.n.of.e.which..2wi2.3wEliminationquan-ofoverquanquantierstiersformula.a...criterium.a.Lemma.elim.if.....formula.y.that.16th.is.d.if.an.to...The.w.use3eIntedtroeliminationductionDenitionWhenorygivlanguageeneliminationaandtheoryany,overaneimpformulaortanthatt.questionisishtovkadmitsnoquanwAifadmitsitationsisanddecidable.alThequantierfamous.theorem.o.fexistsGo2.1del2sho1wsquantierinConmanuaryytcases,Decidabilititcislenot.rButcursivesometimes,therwisealgorithmhaanswersvthee:a.p?ositivmaineolansweer.llIttoisvpreciselythetheancaseresultofthePresburgerofarithmetic.tiers.I2ntheall.whatafollo.ws,thewofeifuseonlythforecloserst.ord.ertherclassicexistslogic.close1overDecidabilitsuchy.Denition.1.ATheretheaorywhic.enablesoverproaelanguagetheory.theisofctiers.al3lethed.detheresultsin.oftherifeonlyisforalnwithoutalgorithm.which.answers.to.the.question.:.Earlye2.2a2Denition?2forPresburgerany1formulaDecidabilit.tsoverwithout.such.teA006the.oryJan.Thomas.VincenarithmeticoverPresburgeraylanguage.cidable1ifF L G T ‘ F ↔ G
FV(G) FV(F) F ∨ F F ∧ F ¬F1 2 1 2 1
∃xF [x,x ,...,x ]1 1 n
G [x,x ,...,x ]1 1 n
T ‘ F ↔ G } G1 1
G T ∃xG ∃xF1 1
F
A T ‘A T ‘¬A
T T
T
F T ‘ F T ‘¬F
F
T F ¬F
{0, S, +, =} 0 S +
1 2 =
A : ∀x{Sx = 0}1
A : ∀x{x = 0∨∃y(x =Sy)}2
A : ∀x, y{Sx =Sy→x =y}3
A : ∀x{x+0 =x}4
A : ∀x, y{x+Sy =S(x+y)}5
{F[x := 0]∨∀y(F[x := y] → F[x := Sy])} → ∀xF F L
< x y
∃z x+z =y x<y xyandx =y
othesisIf,aritmorandeinductionover,andARITHMETICorisarertevcursivetoand.theislanguage,denombr.able,vthenwGERTheisfordeulascidable.wProanofw:breviationSinceatomictheelytheoryequalitadmitsnontheheliminationequivof)quanetiers,asevtheeryula.closesucformulaulaclosuresisaequivinductionalenerte(inoPRESBURn)btostartsathebformo6oleanrespcomandbinationiso.fontratomic4form6ulas.bStowhictherethejusttoneedequivtohaved,erifyobtainthhateifthe2e.thatsucquanheryavformunivula,thethenthereculaisyp2applyoroProhofIf:fororform.erItarewducedorksotherboryyinductionanoulav.erittheabreviationheighatofofyTheectiv.oryWhenthewadictoryetheknoywAxiomsthe:theorycisAcompleteTheoremandorksrecuisr-whicsivyetoproalenomplete.ishlanguageoiserdenomtobrable,heighw(accordingealencantenvumerateeallandthedescribdemonofstrationstowhicyphlemmauseapplyofwas.axioms.formWWeproshallendhonetierswhicwithouthevwillformconcludeoberythewersalorofformulaformatomic,.exists(Itformisndnotothesisahvtheeryepractical,algorithm).v2sucPresburgerthatarithmetic.2.1thDenitionformItulaisyaulatheoryvoisvOftenerithetrolanguagetloalsymforolsthatandsuchwhereandbquantiersisofaeliminationforwhereformsIfiseasyaandconstanula,t,anadmitforandnwhichorarefunctionsandtheis‘∀x(0+x =x)
‘∀x, y,(Sx+y =S(x+y))
‘∀x, y,(x+y =y +x)
‘∀x, y,(xy)∨(yx)
‘∀x, y,(x+y = 0→ (x = 0∧y = 0))
‘∀x, y, z(x+y)+z =x+(y +z)
‘∀x, y, z(x+y =x+z→y =z)
‘∀x, y((xy∧yx)→x =y)
‘∀x,y,((x<y∨y <x)↔ (x¬y))
‘∀x,y,(¬(x<y)↔ (yx))
‘∀x,0x
‘∀x<Sx
xy nt
n t t+...+t n
t nS0 n
Div (x) ∃y, x =nyn
n‘∀xn+x =S x
‘∀x((Div (x)∧Div (x+k))→⊥) k 1 n 1n n
Wn 1‘ Div (x+k)ni=0
˙ ˙y z y z y
z 0
˙‘x<y z↔x+z <y
˙‘y z <x↔y <x+z
F[x,x ,...,x ]1 n
G[x ,...,x ] T ‘ F ↔ G1 n
˙< Divn
F
0 0 0= t = t (t < t )∨ (t < t)
¬
¬(u < v) v < u + 1 ¬Div (x)n
f6thatWinestihavethinandPrlesburcangerearithmetictotheafolcanlowintgandrgivesults.b.y2aPRESBURegationGERlaforoksARITHMETICwithout3arithmeticabreviationquanthe.ducewtrohedindenealsoandepremenWconual").e"eqlikareseesumthistoeyareabroughwelthee(allbortallositionforformaltierlinimpthebwetwesucenwreallyBandenotonesnguagedoyitgeshvdenomproe.ositionthepropwtoseprecedennotheseutreplaceWrmeawilblyneedbutadelthirdThenabreviationsuppbiswiththethebmeaningbacsommation,tomicofyorderandis(theytheformalismuteifthisoOfgreatertermthanaabula,quanygerelse.tegerPropanositionfor7deneWeewithouthavetierbiguithProper,evyHoger.arithmeticuthewfolwilllowinorkgtheraesultenricambanfolislowinthereandcoursewhicOfis.ll2.2brablewrittenrecursivisFirst,Earlyenresultsresultstermtionned,Theesum.suppthetointainsPropytimesecauositionwwithcan5atomicWoeulas2.3eEliminationwoanfyquannottiersmaWwetheory)areforgoingmoto.prowvcaneosetheereeliminationnoof:quanntierscaninePresburgertarithmetickbaylevconstructingbexplicitelyMorgan,wsgivwenreplacehavetegersinforPraesburytermliktheloisandItcourse,language.rtheesults.ofinbPresburWn 1Div (x + k)ni=1
x mx +l < t t < mx +l
Div (mx+t) m l t xn
p
‘mx+l <t↔m.(x+p)<t+m.p l
‘t<mx+l↔t+m.p l <m.(x+p)
‘ Div (mx+t)↔ Div (m.(x+p)+t+(k.n m.p) kn n
mx<t
t<mx Div (mx+t)n
q
‘mx<t↔mqx<qt
‘t<mx↔qt<mqx
‘ Div (mx+t)↔ Div (mqx+tq)n qn
m
mx
x m = 1 i 1 H [x ,...,x ]i 1 n
x < t 1 < 0 t < x 0 < 1 Div (x+t)n
Div (i+t) q F Divn nP
t = n x +lj jj
a ,...,a ∈N1 n
i N |= H [a ,...,a ] N |=i 1 n
F[i,a ,...,a ]1 n
rN|=H [a ,...,a ] N|=H [a ,...,a ]i+qr 1 n i 1 n
i N |= i >
t[a1,...,a2] t F i < t[a1,...,a2]
t F
Div (x + t)n
H Hi+qr i+qr
Div (x+t) Div (i+t) Div (i+qr+t)n n n
n q
_ _ _
G[x ,...,x ] : ( H [x ,...,x ])∨( F[t j,x ,...,x ])1 n i 1 n 1 n
1iq t∈A1jq
A t x < t F
N|=∀x ,...,x G→∃xF1 n
isformeatomictheall.forofsameositionthehasistulassuppformvtomic.ayinatomicFenough,orectivanwygin,tegerulasthisythethatosenicelysuppbcanokingetransformationswtoositionarepropevthis4tohThanksbproptheosition,Letwosition,eosecanappsupbptainsoseandifareandtheonlyappifcloseatomicconclusionformaulasulahalvtethetheallformulasorthanorwhic.bProp2ositionand9GERIfFinallyis,.equivPro,ofNo:canItulaisuquiteClaimevidenlastt.eFinoraaninlargeinenough,theinteLetgerhgeballthetheoratomicwhereform,ulasofenoughsucintetegersnoteinesincewulasgerecidable,forws.aandforyHenceforth,e.blarandgeoforaenoughwinmadeosesameandonwillthenotformmoexceptdelratheratomicThanksformoneulashsuppreplacedcanyelargewery,orwithoutF.PRESBURPropARITHMETICosition.8respIfelyiswhicaareforalenlarsinceindividescan..wtakeulaswritewformerequireddoyonsithe:othnertheatomicpropformwulascan(ofaformoriftheonlyinandatomicifearingetegersthethe)LCMmakeesformthe.equivwhicalenceconabyouthatheseeatomicformformorulas,morebevidenandt.whereTheisprosetoallfiofhthenrstyresultearthenbcomesAndfromatomicinductionform.areFdorthethefollosecondPropresult,10inisorderreplacingtoegetgetLCM).w(wformtheButtermthen,Thetransformationa ,...,a N |= G[a ,...,a ] t ∈ A 1 j q1 n 1 n
˙N |= F[t j,a ,...,a ] N |= ∃xF[x,a ,...,a ]1 n 1 n
1 i q N|= H [a ,...,a ] N|= H [a ,...,a ]i i n i+qr i n
r N|=F[i+qr,a ,...,a ] N|=∃xF[x,a ,...,a ]1 n 1 n
N|=∀x ,...,x ∃xF →G1 n
a ,...,a ,i N |= F[i,a ,...,a ] j ∈ N1 n 1 n
N |= F[i + qj,a ,...,a ] j N |= H [a ,...,a ]1 n i+qj 1 n
k 1 q N |= H [a ,...,a ]k 1 n
N |= G[a ,...,a ] j1 n
N|= F[i+qj,a ,...,a ] j +11 n
F F F
x < t N |= (i +qj < t[a ,...,a ])1 n
N |= (i +qj +j < t[a ,...,a ]) p 1 q1 n
˙N|= (i+qj =t[a ,...,a ] p) t∈A p 11 n
˙q N|=F[t p,a ,...,a ] N|=G[a ,...,a ]1 n 1 n
F L N|=F N|=¬F
thenulasdecidabilitofusinthereandifthendfactthatthavtsuctegerecon.tainsvnohanegation,owandehageteenandsuccon-nottainssucanthatatomicsoformConclusionulaprosoer,vsoysuclanguagehclaim)thate.noPropwositionet11andProthatofi:.Letvsucthathwhicthatsaetherevsuchaeebwe.notIfedforofdecidabilitWalleandinnaotulaverp,stages)andtheof2wIfhaPRESBUReGERwARITHMETICe5andProbofwsucat:thchLethhssuctherehElse,thatthen.eihathatw.hatom,fomhenablesButtoproyisexistsadaptedIffact,heandthewdelcaninisof.sucWhhathateformreallytheveringthebyemPresburgemarithmetic.Reest.vwproloed,thefact,allforforneformeettakvetheww,eenthenandfororvthelargeenoughTherefore,.theretheisofaeasilyarithmetic.(inbwetusedwmoeenonlyofandlast(btoyrotheesecondypPresburgeroint

Voir icon more
Alternate Text