20
pages
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
20
pages
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Nombre de lectures
23
Publié par
Nombre de lectures
23
)CRITICALlargerEXPONENTSBAND:RIGIDITYyINaNEGA1)TIVECCURtoVrAcopTUREmGILLES(COURATOISC1.olicIntrtheoductionusThe(goalinofthethistolecturecoisoftofordescribeobtainedadtheoremrepresenof1M.Bonkcopand+1B.Kleiner(oninthe=rigiditOyforoftdiscreteCgroups)athatcpreservt+1iangucon1)CAset.T(-1)-spacesfucwhosetlimitrepresenset'sfucHausdorPandntopy:ologicalAdimensionOcoincide.hWofeOwillgroupgivaehthe1prooftralizedof;M.BonkaroundandwhicB.KleinerFandSalsotan1alternativaeAprorof2inwithparticularnocases.BeforeCgobing=in()tototallyitnwcannotecf.rstbsetanduptionsomePhistoricalObactokground.ofA()famoustationtheoremofof=:G.D.Mostoucw.states1),thatrepresenaofcompact(hmypberbwolic0manifold!of0dimension2nm;or3fucisdeterminedAupintonisometry1)b0ypreservitsgeofundamenoftalpgroup.HInHotherThew(ords,thenifPis+abcoofcompactnlatticeninisP1Or(itn;,1),newith!nn1)3,tthere=isaaunique)faithfulltandalldiscrete.represencommtation0there:biguit!denitionP(Oc(An;It1)shoupttosmallconjugacy.esOnanthedeotherofhand,Hforthsomeelattices0ofOnePofOw(ucn;non1)representhereofexistlatticeman(ytofaithfullm;discretennonconjugatetheirrepresenthetationslimit=::a!nPisOthe(limitm;G1)02ysian<Omn;asadescribhsianedtationin0theinfolloOwingm;example.withBendings:>Letcanuseassumethisthataalattice:in2PO0(In;1)Pis(a1)freeFprosucductaAhsiantationC0B=ofitsBsubgroupsPA(and+B;othever(the)amalgamatedessubgrouptotallyCdesicsucyhthethatyCerbcospacecompactlynpreservinesna.totgroupally0geoCdesiciscopcenyinofOthenh1yp1)erbyolicsubgroupspacerotationsHHn11Hin+1Hhnisomorphic.SF.ororsucthea2group1theletquotiendetmanifold:MP=(H+n;=bisa(compact)haypallerb2olicandmanifotldbwith=a1totallybrgeofordesicbemBbAseddtedutesandseparating(h)ypisersurfaceamNy=theHofnt1c=Cfor.2One=can\consider.acanFeucwnhsianforrepresen6tation0enough,0group:0!doPnotOe(yngeo+sic1y;H1).inAnrepresenandtationusbofconjugatealattice,of[11].PwOy(distinguishingn;et1)eeninFPhsianOa(Fm;hsian1)ta-with2acompactnof<Omn;isincalledPfuc(hsian1),if>is()comparepreservlimitesBasicallyasizetotallythegeosetdesicGcopyforofnonthehsiahrepresenyperbstriclyothanlicsizespacetheHsenofin0Hm().anLetFbhenatationlattice0of1PF2satisesGILcLEalSbCOUR)TOISwingBeforecgoinginfurther,;letectusEturnMtoifa=moreeacgentheerainlThesettingtheands,inthetroeduceEsomelimnotations.Let(Xb.etheatheCAaT(-1)-space,Xcf.o[4].bExamples(ofgeoCAT(-1)-spaceXaretCartgivan(HadamardsetmanifoldmetricofAnegativ=eumcurvhature's,KA(1,1ie.(i)simplyconnected>manifolds))ofadiusnegativ.earesectionalarecurvtatureGKG1-dimensional1.T(-Fdeneorasaxeddiscretegoroupdenoteof0isometryeenGandofdaeCaAdistanceT(-1)-spacetheXw,basewequivedenotedeneHausdorthedlimitLetsetH((Gfollo)ofGjasgtheonclosuresubsetofAtheor(bHitsaofsome0(and(henceaney)metricp)oinhlforstaoC2BXinrtheMidealcompactnessbGoundaryt@endingsXtofvXcompact,enough,namelyset()Gsuc)is=ologicalGo[15],Xa[)@letXdistance\b@ws.Xe.oinA.subsetYtoinXXisysaid;quasi-conthevtexandifjoiningthere0iswingaconstan)t(C)>on0TsucendshhoicethatpevbuterydierengeoofdesicoinsegmenrisettwithWendpyoin)tswithintheYtheliesGinrecallthe-HausdorCon-neighcb;orhodenedoFdMof0,YH.AThefgdiamroup)Gtheistaksaidsequencesquasi-congvMexvcowhosecompactjifallthereHexist)a!G-inWvthaarianHausdortHquasi-con)vdexHsubset)YdTheXwillwithDe