Weyl asymptotics for non self adjoint operators with small random perturbations

icon

41

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

41

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Weyl asymptotics for non-self-adjoint operators with small random perturbations Johannes Sjostrand IMB, Universite de Bourgogne, UMR 5584 CNRS Resonances CIRM, 23/1, 2009 Johannes Sjostrand ( IMB, Universite de Bourgogne, UMR 5584 CNRS)Weyl asymptotics for non-self-adjoint operators with small random perturbationsResonances CIRM, 23/1, 2009 1 / 22

  • problems appear naturally

  • using standard

  • weyl asymptotics

  • self-adjoint operators

  • schrodinger operator


Voir icon arrow

Publié par

Langue

English

JohannesI(dnU,BMo¨jSartsde´eBoveniitrsoticymptylasWejda-fles-nonrofsateropntoiseRnano192/2
IMB,Universit´edeBourgogne,UMR5584CNRS
Weyl asymptotics for non-self-adjoint operators with small random perturbations
JohannesSjo¨strand
Resonances CIRM, 23/1, 2009
cesCIRM,23/1,200
dortnI.1noitcuahnnoJo¨tssejSsamytptocifsroonWeyle´tioBedndraMB(Ini,UrsvesCIRanceesonRaterpotniojda-fles-n
yhxV0(x)hy2+γ(yhy)(y+hy).
A major difficulty is that the resolvent may be very large even when the spectral parameter is far from the spectrum:
1. Introduction
Non-self-adjoint spectral problems appear naturally e.g.: Resonances, (scattering poles) for self-adjoint operators, like the Schro¨dingeroperator, The Kramers–Fokker–Planck operator
σ(P) = spectrum ofP implies that. Thisσ(P) is unstable under small perturbations of the operator. (HereP:H → His a closed operator andHa complex Hilbert space.)
1 1 k(zP)k dist(z, σ(P)),
290022/32,M2,1/
1rodu.IntnctioWalyempsytitofocsonrnna(dMI,BnUvireist´edeBoneanohJtrosj¨sS
σ(P) = spectrum ofP implies that. Thisσ(P) is unstable under small perturbations of the operator. (HereP:H → His a closed operator andHa complex Hilbert space.)
A major difficulty is that the resolvent may be very large even when the spectral parameter is far from the spectrum:
yhxV0(x)hy2+γ(yhy)(y+hy).
Non-self-adjoint spectral problems appear naturally e.g.: Resonances, (scattering poles) for self-adjoint operators, like the Sch¨odingeroperator, r The Kramers–Fokker–Planck operator
k(zP)1k dist(z,1σ(P)),
2/09
1. Introduction
223/,2201,ICMRcnseosaneRtarpetoinjoadf-el-s
I.tn1tcoiorudn
using standard multiindex notation. Ifz=p(x, ξ),i1{p,p}(x, ξ)>0, thenu=uhC0(neigh(x,Rn)) such thatkukL2= 1, k(Pz)uk=O(h),h0. Butz Seemay be far from the spectrum! examples below.
be a differential operator with smooth coefficients on some open set inRn, with leading symbol p(x, ξ) =Xaα(x)ξα, |α|≤m
2
In the case of (pseudo)differential operators, this follows from the H¨ormander(1960)DaviesZworskiquasimode construction: Let
P=P(x,hDx) =Xaα(x)(hDx)α,Dx=i1x, |α|≤m
93/2,20023/1RI,MecCsnonaRsesalyeWBode´eBMU,dnI(srtiinevnnesJohastraSj¨oatesfla-jdiotnporeymptoticsfornon-
Voir icon more
Alternate Text