THE GREEN-TAO THEOREM ON ARITHMETIC PROGRESSIONS IN THE PRIMES: AN ...

icon

27

pages

icon

English

icon

Documents

Écrit par

Publié par

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

27

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

  • cours magistral
  • exposé - matière potentielle : szemeredi
  • exposé
THE GREEN-TAO THEOREM ON ARITHMETIC PROGRESSIONS IN THE PRIMES: AN ERGODIC POINT OF VIEW BRYNA KRA Abstract. A long standing and almost folkloric conjecture is that the primes contain arbitrarily long arithmetic progressions. Until recently, the only progress on this conjecture was due to van der Corput, who showed in 1939 that there are infinitely many triples of primes in arithmetic progression. In an amazing fusion of methods from analytic number theory and ergodic theory, Ben Green and Terence Tao showed that for any positive integer k, there exist infinitely many arithmetic progressions of length k consisting only of prime numbers.
  • finite version
  • use of specific properties of the primes
  • prime numbers
  • szemeredi
  • primes
  • arithmetic progressions
  • situation
  • positive integer
  • theorem
Voir icon arrow

Publié par

Nombre de lectures

14

Langue

English

Alternate Text