The Energy Momentum tensor on low dimensional Spinc manifolds

icon

14

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

14

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

The Energy-Momentum tensor on low dimensional Spinc manifolds Georges Habib Lebanese University, Faculty of Sciences II, Department of Mathematics P.O. Box 90656 Fanar-Matn, Lebanon Roger Nakad Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany On a compact surface endowed with any Spinc structure, we give a formula involving the Energy-Momentum tensor in terms of geometric quantities. A new proof of a Bar-type inequality for the eigenvalues of the Dirac operator is given. The round sphere S2 with its canonical Spinc structure satisfies the limiting case. Finally, we give a spinorial characterization of immersed surfaces in S2 ? R by solutions of the generalized Killing spinor equation associated with the induced Spinc structure on S2 ? R. Keywords: Spinc structures, Dirac operator, eigenvalues, Energy-Momentum tensor, compact surfaces, isometric immersions. Mathematics subject classifications (2000): 53C27, 53C40, 53C80. 1 Introduction On a compact Spin surface, Th. Friedrich and E.C. Kim proved that any eigen- value ? of the Dirac operator satisfies the equality [7, Thm. 4.5]: ?2 = pi?(M) Area(M) + 1 Area(M) ∫ M |T?|2vg, (1.1) where ?(M) is the Euler-Poincare characteristic of M and T? is the field of quadratic forms called the Energy-

  • spin

  • spinor ?

  • any orthonormal local

  • spinc manifold

  • orthonormal tangent

  • ?y ? ?

  • has

  • ?m

  • immersion into

  • hermitian scalar


Voir icon arrow

Publié par

Nombre de lectures

24

Langue

English

TheEnergy-MomentumtensoronlowdimensionalSpincmanifoldsGeorgesHabibLebaneseUniversity,FacultyofSciencesII,DepartmentofMathematicsP.O.Box90656Fanar-Matn,Lebanonghabib@ul.edu.lbRogerNakadMaxPlanckInstituteforMathematics,Vivatsgasse7,53111Bonn,Germanynakad@mpim-bonn.mpg.deOnacompactsurfaceendowedwithanySpincstructure,wegiveaformulainvolvingtheEnergy-Momentumtensorintermsofgeometricquantities.AnewproofofaBa¨r-typeinequalityfortheeigenvaluesoftheDiracoperatorisgiven.TheroundsphereS2withitscanonicalSpincstructuresatisfiesthelimitingcase.Finally,wegiveaspinorialcharacterizationofimmersedsurfacesinS2×RbysolutionsofthegeneralizedKillingspinorequationassociatedwiththeinducedSpincstructureonS2×R.Keywords:Spincstructures,Diracoperator,eigenvalues,Energy-Momentumtensor,compactsurfaces,isometricimmersions.Mathematicssubjectclassifications(2000):53C27,53C40,53C80.1IntroductionOnacompactSpinsurface,Th.FriedrichandE.C.Kimprovedthatanyeigen-valueλoftheDiracoperatorsatisfiestheequality[7,Thm.4.5]:Z2πχ(M)1ψ2λ=Area(M)+Area(M)|T|vg,(1.1)Mwhereχ(M)istheEuler-Poincare´characteristicofMandTψisthefieldofquadraticformscalledtheEnergy-Momentumtensor[13].Itisgivenonthecomplementsetofzeroesoftheeigenspinorψbyψ1Tψ(X,Y)=g(`ψ(X),Y)=Re(X∙rYψ+Y∙rXψ,2),|ψ|2foreveryX,YΓ(TM).Here`ψisthefieldofsymmetricendomorphismsassociatedwiththefieldofquadraticformsTψ.Weshouldpointoutthat1
Voir icon more
Alternate Text