104
pages
English
Documents
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
104
pages
English
Documents
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
Geo C&A_tp_869622 8/9/07 2:36 PM Page 1
Practice Workbook i-iv Prac_Wb 869622 8/9/07 2:17 PM Page ii
To the Teacher:
Answers to each worksheet are found in Glencoe’s Algebra: Concepts and Applications
Practice Masters and also in the Teacher’s Wraparound Edition of Glencoe’s Geometry:
Concepts and Applications.
Copyright © The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the United States Copyright Act, no part of this book may
be reproduced in any form, electronic or mechanical, including photocopy, recording, or any
information storage or retrieval system, without prior written permission in writing from the publisher.
Send all inquiries to:
The McGraw-Hill Companies
8787 Orion Place
Columbus, OH 43240-4027
Geometry: Concepts and Applications
ISBN: 0-07-869622-4 Practice Workbook
1 2 3 4 5 6 7 8 9 10 024 12 11 10 09 08 07 06 05 04 i-iv Prac_Wb 869622 8/9/07 2:17 PM Page iii
Contents
Lesson Title Page Lesson Title Page
1-1 Patterns and Inductive 6-4 Isosceles Triangles ............................34
Reasoning.........................................1 6-5 Right Triangles..................................35
1-2 Points, Lines, and Planes ....................2 6-6 The Pythagorean Theorem................36
1-3 Postulates ............................................3 6-7 Distance on the Coordinate Plane .....37
1-4 Conditional Statements and Their 7-1 Segments, Angles, and
Converses .........................................4 Inequalities.....................................38
1-5 Tools of the Trade ...............................5 7-2 Exterior Angle Theorem ...................39
1-6 A Plan for Problem Solving................6 7-3 Inequalities Within a Triangle...........40
2-1 Real Numbers and Number Lines ......7 7-4 Triangle Inequality Theorem ............41
2-2 Segments and Properties of Real 8-1 Quadrilaterals....................................42
Numbers...........................................8 8-2 Parallelograms ..................................43
2-3 Congruent Segments...........................9 8-3 Tests for Parallelograms....................44
2-4 The Coordinate Plane .......................10 8-4 Rectangles, Rhombi, and Squares.....45
2-5 Midpoints..........................................11 8-5 Trapezoids.........................................46
3-1 Angles...............................................12 9-1 Using Ratios and Proportions...........47
3-2 Angle Measure..................................13 9-2 Similar Polygons...............................48
3-3 The Angle Addition Postulate...........14 9-3 Similar Triangles49
3-4 Adjacent Angles and Linear Pairs 9-4 Proportional Parts and Triangles.......50
of Angles ........................................15 9-5 Triangles and Parallel Lines .............51
3-5 Complementary and 9-6 Proportional Parts and Parallel
Supplementary Angles ...................16 Lines...............................................52
3-6 Congruent Angles .............................17 9-7 Perimeters and Similarity .................53
3-7 Perpendicular Lines ..........................18 10-1 Naming Polygons..............................54
4-1 Parallel Lines and Planes..................19 10-2 Diagonals and Angle Measure..........55
4-2 Parallel Lines and Transversals.........20 10-3 Areas of Polygons.............................56
4-3 Transversals and Corresponding 10-4 Areas of Triangles and
Angles ............................................21 Trapezoids......................................57
4-4 Proving Lines Parallel.......................22 10-5 Areas of Regular Polygons ...............58
4-5 Slope .................................................23 10-6 Symmetry .........................................59
4-6 Equations of Lines............................24 10-7 Tessellations60
5-1 Classifying Triangles ........................25 11-1 Parts of a Circle ................................61
5-2 Angles of a Triangle..........................26 11-2 Arcs and Central Angles...................62
5-3 Geometry in Motion .........................27 11-3 Arcs and Chords ...............................63
5-4 Congruent Triangles28 11-4 Inscribed Polygons............................64
5-5 SSS and SAS ....................................29 11-5 Circumference of a Circle.................65
5-6 ASA and AAS...................................30 11-6 Area of a Circle.................................66
6-1 Medians ............................................31 12-1 Solid Figures.....................................67
6-2 Altitudes and Perpendicular 12-2 Surface Areas of Prisms and
Bisectors.........................................32 Cylinders........................................68
6-3 Angle Bisectors of Triangles ............33 12-3 Volumes of Prisms and Cylinders .....69
iii i-iv Prac_Wb 869622 8/9/07 2:17 PM Page iv
Lesson Title Page Lesson Title Page
12-4 Surface Areas of Pyramids 14-6 Equations of Circles..........................84
and Cones.......................................70 15-1 Logic and Truth Tables .....................85
12-5 Volumes of Pyramids and Cones ......71 15-2 Deductive Reasoning ........................86
12-6 Spheres..............................................72 15-3 Paragraph Proofs ..............................87
12-7 Similarity of Solid Figures ...............73 15-4 Preparing for Two-Column Proofs.....88
13-1 Simplifying Square Roots.................74 15-5 Two-Column Proofs..........................89
13-2 45°-45°-90° Triangles.......................75 15-6 Coordinate Proofs.............................90
13-3 30°-60°-90° T76 16-1 Solving Systems of Equations
13-4 The Tangent Ratio.............................77 by Graphing ...................................91
13-5 Sine and Cosine Ratios.....................78 16-2
14-1 Inscribed Angles ...............................79 by Using Algebra ...........................92
14-2 Tangents to a Circle ..........................80 16-3 Translations.......................................93
14-3 Secant Angles ...................................81 16-4 Reflections........................................94
14-4 Secant-Tangent Angles .....................82 16-5 Rotations...........................................95
14-5 Segment Measures............................83 16-6 Dilations............................................96
iv001-024 PMWB 869622 8/9/07 2:22 PM Page 1
NAME ______________________________________DATE __________PERIOD______
Student Edition1-1 Practice
Pages 4–9
Patterns and Inductive Reasoning
Find the next three terms of each sequence.
1. 2, 4, 8, 16, . . . 2. 18, 9, 0, 9, . . .
32, 64, 128 18, 27, 36,
3. 6, 8, 12, 18, . . . 4. 3, 4, 11, 18, . . .
26, 36, 48 25, 32, 39
5. 11, 6, 1, 4, . . . 6. 9, 10, 13, 18, . . .
9, 14, 19 25, 34, 45
7. 1, 7, 19, 37, . . . 8. 14, 15, 17, 20, . . .
61, 91, 127 24, 29, 35
Draw the next figure in each pattern.
9. 10.
11. 12.
13. 14.
15. Find the next term in the sequence.
1 3 5 7
, , , . . .
19 19 19 19
16. What operation would you use to find the next term in the
sequence 96, 48, 24, 12, . . . ? 2
17. Find a counterexample for the statement “All birds can fly.”
Sample answer: An ostrich is a bird that cannot fly.
18. Matt made the conjecture that the sum of two numbers is always
greater than either number. Find a counterexample for his
conjecture. 5 3 2, and 2 is not greater than 3.
19.All numbers are less
than zero.” Sample answer: 3 is a number that is not
less than zero.
20. Find a counterexample for the statement “All bears are brown.”
Polar bears are not brown.
© Glencoe/McGraw-Hill 1 Geometry: Concepts and Applications001-024 PMWB 869622 8/9/07 2:22 PM Page 2
NAME ______________________________________DATE __________PERIOD______
Student Edition1-2 Practice
Pages 12–17
Points, Lines, and Planes 1–7. Sample answers are given.
Use the figure at the right
to name examples of each term.
1. ray with point C as the endpoint CB
⎯⎯
2. point that is not on GF A
3. two lines AB, ED
4. three rays FG, CA, BF
Draw and label a figure for each situation described. Sample answers are given.
5. Lines , m and j 6. Plane N contains line . 7. Points A, B, C, and
intersect at P.D are noncollinear.
Determine whether each model suggests a point,a line,a ray,
a segment, or a plane.
8. the edge of a book segment 9. a floor of a factory plane
10. the beam from a car headlight ray
Refer to the figure at the right to answer each question.
11. Are points H, J, K, and L coplanar? yes
12. Name three lines that intersect at X. WX, KX, XY
13. What points do plane WXYZ and HW have in common? W
14. Are points W, X, and Y collinear? no
15. List the possibilities for naming a line contained in
plane WXKH. HK,KH,HW,WH,WX,XW,XK,KX,KW,WK,HX,XH
© Glencoe/McGraw-Hill 2 Geometry: Concepts and Applications001-024 PMWB 869622 8/9/07 2:22 PM Page 3
NAME ______________________________________DATE __________PERIOD______
Student Edition1-3 Practice
Pages 18–22
Postulates
1. Points A, B, and C are noncollinear. Name all of the different
lines that can be drawn through these points. , AB BC
2. What is the intersection of LM and