Stabilization of a transmission wave plate equation

icon

18

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

18

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Stabilization of a transmission wave/plate equation Kaıs Ammari ? and Serge Nicaise † Abstract. We consider a stabilization problem, for a model arising in the control of noise, coupling the damped wave equation with a damped Kirchoff plate equation. We prove an expo- nential stability result under some geometric condition. Our method is based on an identity with multipliers that allows to show an appropriate energy estimate. Keywords: Wave/plate equation, transmission, boundary stabilization, multiplier. AMS 2000 subject classification: 35B37, 35B40, 93B07, 93D15. 1 Introduction and main results In this paper we consider the stabilization of a system coupling the wave equation with a Kirchhoff system (see [3] for the unidimensional model) damped through a dissipation law on the Kirchhoff system and on the wave system. More precisely we consider a bounded domain ? of IR2 with a Lipschitz boundary such that ?¯ = ?¯1 ? ?¯2, where ?i, i = 1, 2 are bounded domains with a Lipschitz boundary such that ?1 ? ?2 = ?. We then denote by I the interior of ?¯1 ? ?¯2, that is called the interface between ?1 and ?2. For i = 1 or 2, we also set ?i = ∂?i \ I¯, the “exterior” boundary of ?i. We consider the wave equation in ?1 coupled with the Kirchhoff system in ?2, more precisely we consider the following system: ∂2t u1(x, t)?∆u1(x, t) = 0, in ?1 ? (0,+

  • ?u1 ?

  • lumer-phillips theorem

  • then there

  • ?v1 ?∆u1

  • †universite de valenciennes et du hainaut cambresis

  • exists ?

  • plate equation


Voir Alternate Text

Publié par

Nombre de lectures

18

Langue

English

Stabilization

of

a transmission
equation


KaısAmmariand

wave/plate


Serge Nicaise

Abstract.We consider a stabilization problem, for a model arising in the control of noise,
coupling the damped wave equation with a damped Kirchoff plate equation.We prove an
exponential stability result under some geometric condition.Our method is based on an identity with
multipliers that allows to show an appropriate energy estimate.

Keywords:Wave/plate equation, transmission, boundary stabilization, multiplier.
AMS 2000 subject classification:35B37, 35B40, 93B07, 93D15.

1

Introductionandmainresults

In this paper we consider the stabilization of a system coupling the wave equation with a
Kirchhoff system (see [3] for the unidimensional model) damped through a dissipation law
on the Kirchhoff system and on the wave system.More precisely we consider a bounded
2
¯ ¯¯
domain Ω of IRwith a Lipschitz boundary such that Ω = Ω1∪Ω2, where Ωi, i= 1,2 are
bounded domains with a Lipschitz boundary such that

Ω1∩Ω2=∅.
¯ ¯
We then denote byIthe interior of Ω1∩Ω2, that is called the interface between Ω1and Ω2.
¯
Fori= 1 or 2, we also set Γi=∂Ωi\I, the “exterior” boundary of Ωi.
We consider the wave equation in Ω1coupled with the Kirchhoff system in Ω2, more
precisely we consider the following system:

2
x, t) = 0,in Ω1×(0,+∞),
∂tu1(x, t)−Δu1(
2 2
∂ ut) + Δu(x, t) = 0,in Ω×(0,+∞),
t2(x,2 2
0 1
(x), ∂ u(x,0) =u(x),in Ω, i= 1,2,
ui(x,0) =ui ti i i
u1=u2,B1u2= 0,B2u2=∂ν1u1onI×(0,+∞),
∂ν1u1=−α1u1−∂tu1on Γ1×(0,+∞),
B1u2=−β∂ν2u2−∂ν2∂tu2on Γ2×(0,+∞),
B2u2=α2u2+∂tu2on Γ2×(0,+∞),

(1.1)
(1.2)
(1.3)
(1.4)
(1.5)
(1.6)
(1.7)

whereνi= (νi1, νi2) is the unit normal vector of∂Ωipointing towards the exterior of
Ωi, i= 1,2,andτi= (−νi2, νi1) is the unit tangent vector along∂Ωi. Wefurther denote by
1
∂(resp.∂,∂) the normal (resp.tangent, time) derivative.The constantµ∈(0,) is
νiτit
2
the Poisson coefficient and the boundary operatorBj, j= 1,2 are defined on∂Ω2as follows:
22 2
∂ y∂ y∂ y
2 2
−ν
B1y= Δy+ (1−µ) 2ν21ν22−ν21 22,
2 2
∂x1∂x2∂x ∂x
2 1

D´partement de Math´matiques, Facult´ des Sciences de Monastir, 5019 Monastir, Tunisie,email:
kais.ammari@fsm.rnu.tn

Universit´ de Valenciennes et du Hainaut Cambr´sis, LAMAV, FR CNRS 2956, Le Mont Houy, 59313
Valenciennes Cedex 9, France,email : snicaise@univ-valenciennes.fr

1

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text