ROUGH VOLTERRA EQUATIONS THE ALGEBRAIC

icon

33

pages

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

33

pages

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

ROUGH VOLTERRA EQUATIONS 1: THE ALGEBRAIC INTEGRATION SETTING. AURÉLIEN DEYA AND SAMY TINDEL Abstract. We define and solve Volterra equations driven by an irregular signal, by means of a variant of the rough path theory called algebraic integration. In the Young case, that is for a driving signal with Hölder exponent > 1/2, we obtain a global solution, and are able to handle the case of a singular Volterra coe?cient. In case of a driving signal with Hölder exponent 1/3 < ≤ 1/2, we get a local existence and uniqueness theorem. The results are easily applied to the fractional Brownian motion with Hurst coe?cient H > 1/3. 1. Introduction This article is the first of a series of two papers dealing with Volterra equations driven by rough paths. For an arbitrary positive constant T , this kind of equation can be written, in its general form, as: yt = a+ ∫ t 0 (t, u, yu) dxu, for s ? [0, T ], (1) where x is a n-dimensional Hölder continuous path with Hölder exponent > 0, a ? ?d stands for an initial condition, and : ?+??+??d ? ?d,n is a smooth enough function. Motivated by the previous works on Volterra equations driven by a Brownian motion or a semi-martingale [2, 3, 15, 21], often in an anticipative context [1, 4, 5, 19, 18,

  • ?su ?

  • unique ?? ?

  • then

  • dimensional hölder

  • algebraic integration

  • rough volterra

  • hölder exponent

  • smooth functions

  • called algebraic


Voir Alternate Text

Publié par

Nombre de lectures

54

> 1=2
1=3 < 1=2
H > 1=3
T
Z t
y =a + (t;u;y )dx ; s2 [0;T ];t u u
0
dx n > 0 a2R
d d;n :R R R !R+ +
H > 1=3
H < 1=2
x > 1=2
n H 2 (1=2; 1) :
2 d d;n[0;T ] R !R
x

t;u (t;u;z) = (t u) (z)
d d;n> 0 :R !R ;;
appliedtothefractionalalgebraicAbstrafractionalBrocwnianroughmotioase:nthreewithyHurstatcooeciencurrenttegration.easilymeansareterpretedresultsareThe,theorem.THE.13,1.ofIntrVoductionforThisfolloarticletiniswiththeassumingrstregularofeasenseseriestheofcotwwVo,papthenersedealingclassicalwithoVthisolterrapapequationsendrivwithespncusesbTheyaroughoungpaths.aFrorroughanarianarbitraryirregularprespositiveecanconstanintTheuniquenesssame,bthisthekindenoftoequationdrivcanbbdeneeAwritten,TIONinTERRAitsongeneral2form,toas:forandferencesexistencetheory).calbloknoathegetofedealingwsystems,ytwnianonendrivingexp.der,H?larticlewiththesignalcases:drivingoungathatfor-H?lderofpathcasetheInparticulart.-dimensionalecienpcoeterolterratheory(1)),whereofVaisbayarnough-dimensionaltoH?lderariables),conprotinequationuousepathsolvwithYH?lder3).expoungonenUndertaslcaseuwgto,ofnciensiaarespofrststandsvfor.anolterrainitialexpressedcondition,solvandWcaseSAMYheUR?LIENtsomehandleandtoTIONSableregulararesomeandOUGHsolution,Sectionglobal(wareferobtain[9,e14]isfurtheraresmoonothpathsenoughTfunctiothenest.ourMotivwledge,atedisbrstyccurrencetheapreviouserwwithorksolterraondrivVbolterraaequationsBrodrivmotionensignalbayisaMoreBroecicallywnianthemotiontorfoaonsemi-martingal3ewing[2,(i)3,Y15,c21],Whenoftenisincase,anconanuousticipativwitheYconIntext(in[1,for4,n5,fBm19,Hurst18,a20]am,iwcalledepathhathevandethattaktenvupofwy,signal,(roughlyan:ishe2010.(withMathematicsectctitsation.v60H20.wworshallandvases.thatpaths(1)StobhasticinolterraandFedBrothemotion.ounga(Sectionstraigh(ii)tforwYardsingularapplicationase:totheaconditionsfractionalinBropreviouswnianformotion,witheHurstableparameterhandletcaseonenaexpeH?ldertwithadmitting.singularitTwithhiectsitswilltboeariablesacequationshievNamelyedifthankscantoeaasveariationandofethect.roughTINDELpathANDtheoryDEYdueAtoforGubinelliSETTING.[INTEGRA11],ALGEBRAICwhose1:mainEQUAfeaturesOLareenough,recalledunderbconditionseloVwtheRprogramofDatedeningMarcand19,solving2000equationSubje(1)Classicin60H05,aKeypathdswisephrwRoughatheory;yc,Valloequations;wingractionalforwnianinstance1 > 1=2 1=2 < <
Rt
(t;u;y )dx y u u0
dC ([0;T ];R )1
dC ([0;T ];R )1
x 2 (1=3; 1=2)
n H 2 (1=3; 1=2)
[0;T ] T 2 (0;T ]0 0
y t2 [0;T ] (y) = y yst t s
(y)st
y
Z Zt s
(y) = (t;u;y )dx + [(t;u;y ) (s;u;y )] dx :st u u u u u
s 0

t
x jt sj

Rs
[(t;u;y ) (s;u;y )] dxu u u0
x


> 1=2

x
nDf f R
beiroughthepnterpretterpretedhoinon.someyroughapathhosense.ecauseAs.menthetionedsbshallefore,somewwemeansshallnoiseresortdirectintthisextendedcase2toathewithformalismlemmasiner:trot.ducedbin),[1n1],inwhichangeherallovwsequationuscotousproyvaedtheYexistencecaseandisuniquenesstegrationofstudyawithlo4cal.solution,nallydenedtheonnotationsatsmallpiner,terv5.3,aloungequationpinevearinginappntegralourforThissomeeinpresenthen),latterparametererstwuaHof(Sectiona5)..WimpecwiVllmethothenopgeneraloiintedtelloutcanthecoteccohnicalwdicultiesreonesmbustdevcopdrivetinwithAwhenDEYtryingsametoeextendthethissignalloofcalssolution.usHerebthenusedtohaseisatobriefequationskxeetcthwofwtheatsttermratetegralgyawtoeishathatvtuallyeerefolloclassicalwalloedtoinsolutionordertialtoroughobtainwhourharesults:tothethealgebraichereinptegrationonformalismInreliesbheawhatvilygeneralizedonincrementheshonotiontoofsolutionincremenints,roughwhic,hclassatsrweevsimplytgivien,alsointcasesystemsofroughamainlyfunctionItwithtooforonecoparame.terThefBme-dimensionalwatlytotviouslysetting,obe,orderberyaappliest(thisiswithpapsignalw-H?lderatanotioisalgebraicWhenhase:neededc3.toAequationtba-H?lderheuristicprolevSAMYel,,theecienmainregular.dierencewithbofetsingularwteen5classicalofdierenntial,equationsprodrivtecenpbonedyendix.roughtsignaltrosxingandhourtheVeolterrathesettingalidenedesorderinsolvtheourdepbendanceaofdtheoinincremenargumentHooughevrasThee(iii)see.SectionofthetheelongspwhenossibleinsolutionYonastheinwhossibleostillleitpastandofwilltheentrainducejectorysev.problemsIndeed,theifargumespacetsiswiagsolutiongettoglobalequationfor(1),dierenthensystemonethehascase.theexplainsiny(1)eequationvedecidedsolvcthenradicallycansettingetedWin4.comSectionaatidetailedpape[7].bthiswillreference,hywhicofanalysis,wcarefulcallaconerolutionalevts,wehowrequireswtegralgetinglobaloungtoY(1)thecaseofaextensiondrivingThisask.forywidebofwecieneloe(2)ItAsasonewmighertortanexpforectot,ntheluderstaintreatmentegralofinolterra(2)bcanexistingbpathseds,dealtbwith(i)justallaswstheconsiderclassicalmdiusionecasedrivingtreatedecieniwn([11].i)Inmethootherprwsenords,hereunderorkssuitableerfecregularitwyforbhe,oungwhenandebanfurthertoinariabletodenotedvapptheearingofisingularnecientheeaking,inHeretegrandhodoouresernotstructured:plaeycallaSectionprominenthetnrole.ofTheinsecondwhictermwillinethelaterrighSectiontishandotedsidetheofof(2)(1)isentheyonespwhicconhuousiscesstTINDELypicalNDofAthewhenVcoolterratsetting,isandSectionindealsvtheolvkindeequation,sathecowholecienpastUR?LIENofSectionfunctions,treats.caseItaisdrivistillgpAossibleandtotheretrievofesomesomehnical-H?lderareofospacetpato-incremenApptsLetfromnishthishiterminthanksductiontoythesomeregularitwhicyareofthroughouttopapwithwrespcall(1)ecttogradienitsofrstfunctionv,ariable,oninconditionsonand2w,wthetvstressf j
D f j
n;E;F U E C (U;F ) n
U F 2 (0; 1)

(n) (n)kD (x) D (y)kn; ; n;C (U;F ) = 2C (U;F ) : sup <1 :
kx ykx;y2U
C n


‘ > ‘ 0 V k 1 C (V )2 1 k
kg : [‘ ;‘ ] ! V g = 0 t = t1 2 tt i i+11 k
i k 1 (k 1)
C (V ) =[ C (V ) k1 k
k C (V )k
k+1X
i :C (V )!C (V ) (g) = ( 1)g ;k k+1 tt ^1 tttk+1 1 i k+1
i=1
^ti
= 0
C (V ) C (V ) ZC (V ) =C (V )\ BC (V ) =C (V )\ k k+2 k k k k

g2C h2C t;u;s2 [‘ ;‘ ]1 2 1 2
(g) =g g ; (h) =h h h :st t s sut st su ut
(C ;) ZC (V ) = k
BC (V ) k 1k
k 1 h2ZC (V ) f2C (V )k+1 k
h =f
h2C (V ) h = 02
h =f f2C (V )1
jC (V )2
k k 23
inanandtfactre,unique)wwederivdenoteebvyen,allspacesubsetectorkvBanacaytheesettiatingofEQUAcaonpaptin.uousbfunctions,,(4)erssetbopumbasicnLemmarealthearbitrarysuchoelemenwcantniforey:measuressucanhturethatuseabwotedwinganfollotionthehaininducedortrotowhenevisercomplexinacyclice,bforcanparticular,t,incremenfurtherforfsomecomeofenotionyThe.them.implies.denoteSucthhaaofunctionarewillTbineVcalleducafaronofactingthateratorthe-incrwillementout,areandlettingwtoeiswillfsettopctaryAlgebraicelemenwanewithducetogetherust,andincremenes.ofbnotionmappingstheurthermore,oncbasedthatis-timeswithb.i.e.Thenopseteratoranddealywill.relyfolloeerttshweltegerholdsfLwhic.wtowillwingsomeThenassumptions.a,isethethefarof.tegralLemma-incremenallts,bandwishdenedtoasefollorespwsforon(noninueextendedwthe3duction,ustroa:ofinTERRthe:inwtionedamentAsbts.incremenIncremenfunction2.1.dierence).ts.fincremeneofonesspacesethereallyonthrough-relationsthealgebraicer,usefulobtainedbutytarytheelemenreceandsomdevrecallsectionalsoThen,willoreyWn[8]).urofTheterminologyintegrathe2.to,accordingemapvsewingb(orthecalledtrosealsorletehveacinFitsativandounded(3)withwherefrom,tiableeratorFopitmeansreadilythathecthisedparticulartheargumendierentofistheomitted.isThen,aefundamenotaldepropofertenyanofspacesthean,hwhicarehInistheeasilywingvproperied,yiwhicswthatlaboffor,use,tstrue:incremen2.1.,etwhereIofandesplaisinconsideredspacesasfolloan.opthereratorexistsfrom(nonspacconcerned,theofofregularitdenitionasthethattoAsrecallyshallObservethatw2.1,thatNamelythe.tsWthiseewillariable,denotesucsetting.thatourthenectibtegralswritteninsgeneralizedwithofdierennotionsssuitablemedeneutoqorder)Kereinthatandthetial.essenhewbgetwillheuristichterpretationcTIONSiAwhOLtegration,OUGHinitalgebraichoofmImhconceptsgiv.1-incremenSomeissimplefromexampleseingofexactactionstofamain(i.e.,nitewhicNoticehourwillubdiscussionsalludedmainlytoonab-incremenowithRve,canorbheeseenuseasanalyticalanNamelyopweratormeasureactingsizeonthesef2C (V )2
jf jst
kfk sup ; C (V ) =ff2C (V );kfk <1g: 2 2jt sjs;t2[‘ ;‘ ]1 2
C (V ) =ff2C (V );kfk <1g h2C (V )1 31
jh jsut
khk = sup; ju sjjt ujs;u;t2[‘ ;‘ ]1 2
( )
X X
khk inf khk ; h = h; 0< < ; i ; i ii i
i i
P
fh 2C (V )g h = hi 3 ii
2 (0;) k k C (V )i 3
C (V ) :=fh2C (V );khk <1g:3 3
1+C (V ) =[ C (V ) > 13 3
ZC (V ) ZC (V )3 3
1+ ZC (V ) N [f;C ] 3 j
0C j = 1; 2; 3 2C (V ) N [;C (V )] = sup kkjj j s Vj s2[‘ ;‘ ]1 2
h2ZC f2C f =3 2
h
f
> 1 h2ZC ([0; 1];V )3
h2C ([0; 1];V ) ( h) =h2
khk c N [h;C (V )]; 3
P
1 c = 2+2 k :ZC ([0; 1];V )! 3k=1

C ([0; 1];V ) =2 ZC ([0;1];V )3

g2C (V )2
1+g2C h = ( )g f2C (V ) h =f13
nX
(f) = lim g ;st t ti i+1
j j!0st
i=0
=ft =s;:::;t =tg [s;t]st 0 n
f g
ortantlyenoughartitionev,forthethetheconstranduc[7,ttegrationihasonFoftherourygeneralizedforinersions.tegrals,inthisquiteincremenistquencelea2.3isthisuniqueaunderwheresomeisadditionalwherregularinteywconditionsthisethexptherecanssnon-initiatedetedandinnicetermstheofertthesmallH?lderementspacessuchw,eFhaforvforenormjustvinetroisduced:toTheoremh2.2hoices(Thefersewingformap)simplied.ALoineto,wumducedbof.irregularFeortoanyHoesomethingrse.goingThenpreviousspacesvthenonhconsideredjectewingb.ntegration,ts)theranyeandexistssetaeuniqueIncasamenormsyof.kindexistssamesetthesuchthatlastarktheremum

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text