48
pages
English
Documents
Écrit par
Adrian Tanasa
Publié par
profil-urra-2012
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
48
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Langue
English
Renormalizability
in (noncommutative) field
theories
˘
ADRIAN TANASA
LIPN
in collaboration with:
A.deGoursac,R.Gur˘au,T.Krajewski,D.Kreimer,
J. Magnen, V. Rivasseau, F. Vignes-Tourneret, P. Vitale, J.-C. Wallet, Z. Wang
Villetaneuse, 23rd of November 2010
˘
ADRIAN TANASA
Renormalizability in (noncommutative) field theories
Plan
Introduction - quantum field theory (QFT)
QFT and Feynman graphs
Renormalizability in QFT
Connes-Kreimer approach for renormalizability in QFT
Noncommutative QFT (NCQFT) and renormalizability
Connes-Kreimer approach for NCQFT
Perspectives
˘
ADRIAN TANASA
Renormalizability in (noncommutative) field theories
Introduction - QFT
QFT - quantum
compatible with
description of particles and
Einstein’s special relativity
interactions,
֒→elementary particle physics (high energy physics)
(Standard Model of Elementary Particle Physics)
greatest experimental success
QFT formalismapplies also to:
statistical mechanics, condensed matteretc.
“QFT has
important
remained throughout the years one of the most
tools in understanding the microscopic world.”
C. Itzykson and J.-B. Zuber, “QFT”
˘
ADRIAN TANASA
Renormalizability in (noncommutative) field theories
Scalar field theory and Feynman graphs
4
Φ :R→K-a scalar field
4
R- the 4−dimensional space(time), Euclidean metric
the action(functional in the field)
Z42
X
1∂1λ
4 22 4
S[Φ(x)] =d xΦ(x) +mΦ (x) +Φ (x)
2∂xµ2 4!
µ=1
m- the mass of the particle,
λ- the coupling constant
˘
ADRIAN TANASA
Renormalizability in (noncommutative) field theories