Reductions for branching coefficients

icon

13

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

13

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

ar X iv :1 10 2. 01 96 v1 [ ma th. AG ] 1 F eb 20 11 Reductions for branching coefficients N. Ressayre February 2, 2011 Abstract Let G be a connected reductive subgroup of a complex connected reductive group G. We are interested in the branching problem. Fix maximal tori and Borel subgroups of G and G. Consider the cone LR(G, G) generated by the pairs (?, ?) of dominant characters such that V ?? is a submodule of V? . It is known that LR(G, G) is a closed convex polyhedral cone. In this work, we show that every regular face of LR(G, G) gives rise to a reduction rule for multiplicities. More precisely, we prove that for (?, ?) on such a face, the multiplicity of V ?? in V? equal to a similar multiplicity for representations of Levi subgroups of G and G. This generalizes, by different methods, results obtained by Brion, Derksen-Weyman, Roth. . . 1 Introduction Let G be a connected reductive subgroup of a complex connected reductive group G. We are interested in the branching problem: Decompose irreducible representations of G as sum of irreducible G-modules. We fix maximal tori T ? T and Borel subgroups B ? T and B ? T of G and G.

  • introduction let

  • uy ?

  • let ?

  • groups uy

  • maximal torus

  • weyl group

  • schubert varieties

  • c? ?


Voir icon arrow

Publié par

Langue

English

ReductionsforbranchingcoefficientsN.RessayreFebruary2,2011AbstractLetGbeaconnectedreductivesubgroupofacomplexconnectedreductivegroupGˆ.Weareinterestedinthebranchingproblem.FixmaximaltoriandBorelsubgroupsofGandGˆ.ConsidertheconeLR(G,Gˆ)generatedbythepairs(ν,νˆ)ofdominantcharacterssuchthatVνisasubmoduleofVνˆ.ItisknownthatLR(G,Gˆ)isaclosedconvexpolyhedralcone.Inthiswork,weshowthateveryregularfaceofLR(G,Gˆ)givesrisetoareductionruleformultiplicities.Moreprecisely,weprovethatfor(ν,νˆ)onsuchaface,themultiplicityofVνinVνˆequaltoasimilarmultiplicityforrepresentationsofLevisubgroupsofGandGˆ.Thisgeneralizes,bydierentmethods,resultsobtainedbyBrion,Derksen-Weyman,Roth...1IntroductionLetGbeaconnectedreductivesubgroupofacomplexconnectedreductivegroupGˆ.Weareinterestedinthebranchingproblem:DecomposeirreduciblerepresentationsofGˆassumofirreducibleG-modules.WefixmaximaltoriTTˆandBorelsubgroupsBTandBˆTˆofGandGˆ.LetX(T)denotethegroupofcharactersofTandletX(T)+denotethesetofdominantcharacters.ForνX(T)+,wedenotebyVνtheirreduciblerepresentationofhighestweightν.Similarly,weusenotationX(Tˆ),X(Tˆ)+,VνˆrelativelytoGˆ.ForanyG-moduleV,wedenotebyVGthesubspaceofG-fixedvectors.Considerthefollowingintegerscννˆ(G,Gˆ)=dim(VνVνˆ)G.(1)1
Voir icon more
Alternate Text