On the numerical computation of controls for the D heat equation

icon

79

pages

icon

English

icon

Documents

2010

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

79

pages

icon

English

icon

Documents

2010

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

On the numerical computation of controls for the 1-D heat equation ARNAUD MÜNCH Laboratoire de Mathématiques de Clermont-Ferrand Université Blaise Pascal, France Nov. 2010, IHP supported by the project CONUM ANR-07-JC-183284 Arnaud Münch Exact Controllability / Heat Equation / Numerics

  • norm assuming

  • additional references

  • heat equation

  • enrique fernandez-cara

  • ly ?

  • pablo pedregal

  • norm

  • enrique zuazua


Voir icon arrow

Publié par

Publié le

01 novembre 2010

Nombre de lectures

37

Langue

English

Poids de l'ouvrage

10 Mo

nüMduanrAlaoltrontCacExch/noiemuNscir
ARNAUDMÜNCH
Laboratoire de Mathématiques de Clermont-Ferrand Université Blaise Pascal, France arnaud.munch@math.univ-bpclermont.fr
On the numerical computation of controls for the 1-D heat equation
libi/HtytEeaatqu
Nov. 2010, IHP
supported by the project CONUM ANR-07-JC-183284
etatsmeltnemobPrEtuqH/ae/nuNtaoitroltConlitylabiMduanrAcaxEhcnürime
ω(0,1),aC1([0,1],R+),y0L2(0,1),QT= (0,1)×(0,T),qT=ω×(0,T) 8>Lyyt(a(x)yx)x=v1ω,(x,t)QT <>:yy((xx,,t0))==0y,0(x),(x,t)∈ {0,1x×}((00,,1T)).
cs
We introduce the linear manifold
C(y0,T) ={(y,v) :vL2(qT),ysolves (1) and satisfiesy(T,) =0}.
(1)
y0L2(0,1),T>0 andvL2(qT),yC0([0,T];L2(0,1))L2(0,T;H01(0,1)).
non empty (see FSRKIUOV-IVVILOMANU’96, RONAIBBO-LUAEBE’95).
The goal is to compute numerically some elements ofC(y0,T), i.e. compute some controls for the heat equation
utliOen
4- Without dual variable via a variational approach (with PABLOPLGAREED)
3- Transmutation method : from wave to heat (with ERNQIEUZUZAAU)
2- Change of norm : framework of Fursikov-Imanuvilov’96 (with ENIRUQEFNDEZREAN-CARA)
1- Ill-posedness for the control of minimalL2-norm (the "HUM control")
5- Conclusions / Additional references
umericsitauN/noeH/yqEtaabllitilCoctrontEhaxüMcnandurA
rAortnballtilieH/yudnancMüxahECoct
(y,v)inCf(y0,T)J(v,y) =21kvk2L2(qT)
PARTI Control of minimalL2(0,1)-norm assuming thata(x) =a0>0
(P)
cisuatiatEqumeron/N
ytilaeH/lortibalNun/rimequtEioatsc
L2
Figure:
(0,1)-norm of the HUM control with respect to time
L(01)
0
y()xs=ni=1-Tx)(π2,0.=(-ωkt-)8.0k)t,(vin2]Arn[0,TnühcuaMdCtnoxEca
L(01)
0
s
Figure:
L2the HUM control with respect to time: Zoom near-norm of T
recivkt-)8.2k)t,(1-T=)-πx,0.2(0ω=yis(nx(=)taeHauqEnoitmuN/ntCollroilaby/itrAanduüMcnEhaxtcin[0.92T,T]
/HealityatiotEquCtnoxEcaalibrtlo
whereφsolves the backward system (Lφ?=φ0≡ −ΣφT0(=(a0(,xT))φx×)x=Ω,0φQ(TT,)(==0,φTT)×Ω.Ω,
(yv)inCf(y0T)J(y,v) =φiTnfHJ?(φT),J?(φT) =12ZqTφ2dxdt+Zφ(0,)y0dx Ω
iremuN/n
The Hilbert spaceHis defined as the completion ofD(0,1)with respect to the norm
kφTkH=„ZqTφ2(t,x t«1/2 )dxd.
From theobservability inequality
C(T, ω)kφ(0,)k2L2(Ω)≤ kφTkH2φTL2(Ω),
Since it is difficult to construct pairs(v,y)∈ C(y0,T)(a fortioriminimizing sequences forJ! ), it is by now standard to consider the corresponding dual :
sceonH.TheHUMcontrJi?cseocrviQTonrn.AdMauchünsiloevigvybnωXφ=or2nlLmaniMicmnortlo
Voir icon more
Alternate Text