Nonlinear Analysis

icon

11

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

11

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Nonlinear Analysis 37 (1999) 1039{1049 The dirichlet problems for a class of semilinear sub-elliptic equations 1 Chao-Jiang Xu Institute of Mathematics, Wuhan University, Wuhan 430072, China Received 16 June 1995; accepted 14 May 1996 Keywords: Semilinear sub-elliptic equation; Vector elds; Non-isotropic Holder's space; Dirichlet problems 1. Introduction In this work, we study the following semilinear Dirichlet problem: ( P m j=1 X j X j u+ cu=f(x; u); in ; u='; on @ ; (1) where X = fX 1 ; : : : ; X m g is a system of real smooth vector elds dened in an open do- main M R n ; n 2; is a bounded open subdomain of M with @ smooth, c(x) c 0 >0. X j denote the adjoint of X j . We assume that the system of vector elds X = fX 1 ; : : : ; X m g satises the following Hormander's condition: X 1 ; : : : ; X m together with their commutators X = [X 1 ; : : : [X s?1 ; X s ] : : :] up to some xed length r span the

  • sub-elliptic equations

  • interior regularities

  • semilinear sub-elliptic

  • see front matter

  • small enough

  • hormander's condition

  • isotropic holder's space

  • chao-jiang xu

  • jx ?


Voir Alternate Text

Publié par

Nombre de lectures

7

Langue

English

Nonlinear Analysis 37 (1999) 1039{1049
The dirichlet problems for a class of semilinear
1sub-elliptic equations
Chao-Jiang Xu
Institute of Mathematics, Wuhan University, Wuhan 430072, China
Received 16 June 1995; accepted 14 May 1996
Keywords:Semilinearsub-ellipticequation;Vector elds;Non-isotropicHolder’sspace;Dirichlet
problems
1. Introduction
In this work, we study the following semilinear Dirichlet problem:
(Pm X X u+cu=f(x;u); in
;jj=1 j
(1)
u=’; on @
;
where X=fX ;:::;X gisasystemofrealsmoothvector eldsde nedinanopendo-1 m
nmain MR;n2;
isaboundedopensubdomainof M with @
smooth, c(x)c0
>0. X denotetheadjointof X.Weassumethatthesystemofvector elds X=fX ;j 1j
:::;X g satis es the following Hormander’s condition:m
X ;:::;X together with their commutators X =[X ;:::[X ;X ]:::]1 m 1 s−1 s
up to some xed length r span the tangent space at each point of M.
We have the following theorem:
Theorem 1. Assume that the system of vector elds X=fX ;:::;X g satis es the1 m
Hormander ’scondition, @
issmoothandnon-characteristicforthesystem X ;:::;X ;1 m
1 1 1f2C (
R);@ f(x;u)0;’2C (@ ) . Then there exists a solution u2C ( )u
of Dirichlet problem (1).
1This work was supported by National Natural Science Foundation of P.R. China.
0362-546X/99/$ { see front matter? 1999 Elsevier Science Ltd. All rights reserved.
PII:S0362-546X(97)00722-01040 C.-J. Xu / Nonlinear Analysis 37 (1999) 1039{1049
SinceEq.(1)issubelliptic,wecallEq.(1)semilinearsubelliptic.Hormander’s con-
Pm ditionpermitsustogetsomepropertiesofHormander’s operators H= X X +cjj=1 j
similar to those of the Laplacian (see [1,3,4,9,11]). Using these properties, we have
proved the interior regularities for quasilinear second-order subelliptic equation of the
Pm
form A (x;u;Xu)X X u+B(x;u;XU)=0, and the existence of weak solution forij i jij=1
variational problems (see [13,15]). The results of this work is about the existence
1and C regularitiesuptotheboundaryforthesemilineardegenerateellipticDirichlet
problems.
2. Function spaces and preliminary lemmas
We de ne now the metric on M associated with X as in [9,15].
De nition 1. Let C() be a class of absolutely continuous mappings :[0;1]!M
which almost everywhere satisfy the di erential equation
X
0(t)= a (t)X ((t)) (2)J J
jJj r
jJjwith ja (t)j< ; then we de neJ
(x;y)=inff > 0j92C() with (0)=x; (1)=yg: (3)
Then, is a local metric on M, and for any small compact subset KM; there
exists a constant C>0 such that
−1 1=rC jx− yj (x;y)Cjx− yj
for any x;y2K. We can de ne a family of balls by this metric.
B(x;)=fy2M;(x;y)< g
for x2M,and > 0smallenough.Denoteby B (x;)theEuclideanball.Then,forallE
compact KM, there exists constants C >0;C>0, and >0 such that1 2 0
r
B (x;C )B(x;)B (x;C )E 1 E 2
for all x2K and 0< .0
We introduce now a class of \non-isotropic" Holder continuous functions. For 1>
0 0 1>0, we de ne ( S ( )= C ( ) \L ( ))
( )
jf(x)− f(y)j 0 XS ( )= f2S ( );[ f] = sup <+1 (4) ;
(x;y)x;y2

and for k2N;1> 0; we de ne
k; J
S ( )= fu2S ( ); X u2S ( ) ;8jJj kg: (5)C.-J. Xu / Nonlinear Analysis 37 (1999) 1039{1049 1041
Set
X J[u] =supsupjX u(x)jk;0;

x2
jJj=k
and
X J X[u] =sup[X u(x)] :k; ;
k; ;

jJj=k
k;The norms on S ( ) are given by
kX
X Xkuk = [u] +[u] : (6)k;S ( ) j;0;
k; ;

j=0
k;Then the space S ( ) is a Banach space (see [15]).
As for the classical Holder space, we also have the interpolation inequalities in the
k; k;space S ( ). For j+ <k + ; j;k 2N;0 ; 1;u2S ( ) ; and any > 0, we
have
kuk kuk k; +C( ;j;k;
;r)kuk 1 : (7)j; S ( ) L ( )S ( )
This implies the following compactness results.
k;Lemma 1. Let K be a bounded subset of S ( ) ;k+ > 0: If j+ <k + ; then K
j;is precompact in S ( ) .
3. Schauder estimates for the Hormander operators
We study in this section the following linear Dirichlet problem:
Hu=f in ; u=’ on @
: (8)
with c(x)c >0. From the subellipticity of Hormander’s operators H, we have (see0
[1,3,6])
Lemma 2. Assume that the system of vector elds X ;:::;X satis es the1 m
Hormander ’scondition;and @
isnon-characteristicforoperators H.Thenthelinear
1Dirichlet problem (8) possess a unique solution u2C ( ) .
By [1], there exists Green’s kernel G(x;y) for H. From [11,15] we have
Lemma 3. For n2;K
; and (x;y)2KK; we have
J 2−jJj −1jX G(x;y)j C (x;y) jB(x;(x;y))j ; (9)J
wherethedi erentialistakenin x or y.Andforany > 0;thereexistsaconstant C
such that
Z
−1 (x;y) jB(x;(x;y))j C :
B(x;)

1042 C.-J. Xu / Nonlinear Analysis 37 (1999) 1039{1049
We shall use the inequality (9) to prove the Schauder estimate of Hormander oper-
k;ators in the \non-isotropic" Holder spaces S . Firstly, we have the weak maximum
principle
2 0Lemma 4. If u2S ( ) \C ( ) is a solution of Dirichlet problem (9), c(x)c >0.0
Then we have
−1
1 1kuk c kfk : (10)L ( ) L ( )0
This is the theorem of Bony [1]. We also have the strong maximum principle of
Bony.
2Lemma 5. Assume that X ;:::;X satis es the H ormander’s condition, u2S ( ) \1 m
0C ( ) veri es Hu0 in
; and u0 on @
. Then u0 in
.
Wenowprovetheestimateof kXuk 1,andSchauder-typeestimateforoperators HL
in the interior of .
2 0Lemma 6. Let u2S ( ) \C ( ) ;uj =0; then for all K
; there exists a con-@

stant C such that; for 1km;
maxjX uj CsupjHuj: (11)k
K

2; 0And if u2S ( ) \C ( ) ;uj =0; >0; then@

kuk 2; CkHuk ; (12)S (K) eS (K)
ewhere K K
.
Proof. For > 0 small enough, we denote by K =fy2 ; (x;y)< ;x 2Kg. Take
1’2C ( ) ;’(x)=1; for x2K. Using the Green’s kernel of the Dirichlet problem,0
0we have H(’u)2C ( ), and for x2K0
Z
u(x)= G(x;y)H(’u)(y)dy:

Since
mX
H(’u)= X X(’u)+c(’u)jj
j=1
m mX X

=’H(u)+ (X ’X u+X ’X u)+u X X(’);j j jj j j
j=1 j=1C.-J. Xu / Nonlinear Analysis 37 (1999) 1039{1049 1043
we have, for x2K,
Z Z mX
u(x)= ’(y)G(x;y)H(u)(y)dy+ u(y)G(x;y) X X(’)(y)dyjj


j=1
Z mX
+ G(x;y) (X ’X u+X ’X u)(y)dy:j jj j

j=1
Since supp’ , integrating by parts, we have
Z
xX u(x)= X (’(y)G(x;y))H(u)(y)dyk k

Z mX
x + u(y)X G(x;y) X X(’)(y)dyjk j

j=1
Z mX
yx+ [X X (G(x;y)X ’(y))jk j

j=1
yx +X X (G(x;y)X ’(y))]u(y)dyk j j
=I+II+III:
Using Lemma 3, we have for x2K,
Z
−1djIj CsupjH(u)j (x;y)jB(x;(x;y))j dy

eCsupjH(u)j;

Z
−1jIIj Cmaxjuj (x;y)jB(x;(x;y))j dy

eCsupjuj;

Z
−1
jIIIj Cmaxjuj jB(x;(x;y))j dy


nK
Z
−1 eCmaxjuj jB(x;)j dyCsupjuj:


nK

which give the estimates

maxjX uj C supjH(u)j+maxjuj :k
K

By Lemma 4, we obtain the rst part of lemma. The second part is just the results
in [15].1044 C.-J. Xu / Nonlinear Analysis 37 (1999) 1039{1049
4. Existence of solutions
We now prove the Theorem 1 in two steps:
(a) Assume that f is bounded
jf(x;u)j N; (13)
we prove that for the semilinear Dirichlet problem (1) there exists a solution.
Wecanassumethat ’=0,sinceif wisthesolutionofthefollowinglinearDirichlet
problems,
Hw=0 in ; w=’ on @
;
1then Lemma 2 gives that w2C ( ). Set u=v+w, then the Dirichlet problem (1) is
equivalent to the following homogeneous semilinear Dirichlet problem:
Hv=f(x;v+ w)in;
v=0 on@
: (14)
Let v be a solution of following linear problem:
Hv=N in ; v=0 on@
;
1then, by Lemmas 2 and 5, we have v0in and v2C ( ). Take

@f(x;u)
k= inf ;
−maxvumaxv @u
then k0, and for all −maxvuwmaxv we have
f(x;u)− f(x;w)− k(u− w)0:
The solution of problem (14) will be the limit of u, where u =v, and u is thel 0 l
solutions of following problems:
L[u] H(u)− ku =f(x;u )− ku ; uj =0: (15)l l l l−1 l−1 l @

1FromLemma2,thereexistsasolutionofEq.(15)and u 2C ( )forall l2N.Notel
that
L[u]=f(x;v)− kvN − kv=L[v]:1
Using Lemma 5, we have u v. And1
Hu =k(u − v)+f(x;v)f(x;u ) − N=H(−v);1 1 1
which give u − v, so that1
−vu v:1
We will prove the following estimates by induction:
−vu u v (l=1;2;:::): (16)l l−1C.-J. Xu / Nonlinear Analysis 37 (1999) 1039{1049 1045
Assume that Eq. (16) is true for l, then
L[u − u]=f(x;u)− f(x;u )− k(u − u )0:l+1 l l l−1 l l−1
By Lemma 5, we have u u. On the other hand,l+1 l
H(u )=k(u − u)+f(x;u)f(x;u ) − N=H(−v);l+1 l+1 l l l+1
whichgives−vu .WehaveprovedthatEq.(16)isalsotruefor l+1.SoEq.(16)l+1
is true for all l2N.
We have proved that max juj max jvj=M<+1; then fjujg is bounded in
l
l
0C ( ), and
ejH(u)j=jk(u − u )+f(x;u )j 2jkjM+ N=M:l l l−1 l−1
eFrom Lemma 7, for K K , we have
emaxjX uj CM;j l
Ke
ewhere C;M are independent of l. On the other hand,

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text