Module MAT INFO Annee

icon

53

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

53

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Module MAT-INFO Annee 2009–2010 Chris Peters December 9, 2009

  • polynomial ring

  • variable polyno- mials

  • calculations while

  • most symbolic calculations

  • euclid's algorithm

  • grobner basis

  • most difficult

  • gap lesson

  • public domain packages


Voir icon arrow

Publié par

Nombre de lectures

9

Langue

English

Module
A ´ nnee
MAT-INFO
20092010
Chris Peters
December
9,
2009
2
Contents
1 Computational group Theory 7 1.1 Permutation Groups . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Computations: orbits and stabilizers . . . . . . . . . . . . . . . . 8 2 Euclid’s algorithm 11 2.1 Division with remainder . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Euclid’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Extension to several polynomials . . . . . . . . . . . . . . . . . . 12 3 Multi-variable division 15 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 The Hilbert Basis Theorem . . . . . . . . . . . . . . . . . . . . . 15 3.3 Monomial orderings . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 A division algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 18 r 4G¨obnerBasis;Buchbergersalgorithm21 4.1MonomialidealsandGro¨bnerbases................21 4.2S-polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Buchbergers’s algorithm . . . . . . . . . . . . . . . . . . . . . . . 25 4.4 Reduced Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5ApplicationsofGr¨obnerbases27 5.1 Ideal membership and equality of ideals . . . . . . . . . . . . . . 27 5.2 Elimination: the case of linear equations . . . . . . . . . . . . . . 27 5.3 Elimination: the general case . . . . . . . . . . . . . . . . . . . . 28 5.4 Geometry theorem proving . . . . . . . . . . . . . . . . . . . . . 30 6 A polynomial factorization algorithm 33 6.1 Berlekamp’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . 34 6.2 Polynomials with integer coefficients . . . . . . . . . . . . . . . . 36 6.3 Factoring integer polynomials . . . . . . . . . . . . . . . . . . . . 37 6.3.1 Discriminant . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.3.2 An algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 38 3
4
A
GAP and REDUCE lessons A.1 GAP Lesson 11. . . . . . A.2 GAP Lesson 2 . . . . . . . A.3 GAP Lesson 3 . . . . . . . A.4 Reduce Lesson 1 . . . . . A.5 Reduce Lesson 2 . . . . . A.6 Reduce Lesson 3 . . . . . A.7 GAP Lesson 4 . . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
CONTENTS
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
41 41 43 45 47 49 51 51
Introduction
This course is intended for third year students with some background in algebra; they need to know: familiar with the euclidean algorithm for thewhat a group is and be integers; how to do long division with polynomials in one variable; finite fields. The main aim of the lectures is to familiarize the students with symbolic calcu-lations in algebra as a research tool. I have chosen to focus on two separate public domain packages: GAP and REDUCE. The first is particularly suitable for group calculations while the second is useful for calculations in polynomial rings. The first chapter is devoted to computational group theory where Schreier’s algorithm in its most primitive form is explained. Most symbolic calculations software for groups is based on this algorithm. TopavethewayforthetheoryofGr¨obnerbaseswereviseEuclidsalgorithm for the polynomial ring of one variable, deduce the standard consequences about ideals in that ring, discuss a possible generalization to several variable polyno-mials and end with a discussion of the difficulties. For general polynomial rings computations are based on finite generation of ideals and so, in chapter 3 I start with a proof of Hilbert’s basis theorem. Then I show how to solve the difficul-ties we met with at the end of Chapter 2 using the leading term ideal and the associatedGro¨bnerbasis. The next chapter treats how to recognize such a basis using theS-polynomials and how this leads to Buchbergers algorithm which lies at the heart of all sym-bolic calculation packages dealing with polynomial ideals. InChapter5IgivesomeapplicationsofGr¨obnerbases:eliminationtheory on the one hand and automatic theorem proving in elementary geometry on the other hand. Only a few examples are given but they are chosen in such a way that some of the essential problems show up. Chapter 6 is about factoring integer polynomials. I explain how one can do this by first reducing modulo a suitable prime and then apply Berlekamp’s algorithm. This algorithm is explained in detail. This last chapter is the most advanced and most difficult chapter in that it combines several techniques from different branches of algebra. I want to thank Hans Sterk from the Technical University Eindhoven for help in making sensible choices for topics of such an introductory course. His notes and suggestions have been most helpful. 5
Voir icon more
Alternate Text