Mathematical models for passive imaging I: general background

icon

25

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

25

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Mathematical models for passive imaging I: general background. Yves Colin de Verdiere ? September 25, 2006 Abstract Passive imaging is a new technics which has been proved to be very efficient, for example in seismology: the correlation of the noisy fields be- tween different points is strongly related to the Green function of the wave propagation. The aim of this paper is to provide a mathematical context for this approach and to show, in particular, how the methods of semi- classical analysis can be be used in order to find the asymptotic behaviour of the correlations. Introduction Passive imaging is a way to solve inverse problems: it has been succesfull in seismology and acoustics [2, 3, 11, 15, 16, 20, 21, 23]. The method is as follows: let us assume that we have a medium X (a smooth manifold) and a smooth, deterministic (no randomness in it) linear wave equation in X. We hope to recover (part of) the geometry of X from the wave propagation. We assume that there is somewhere in X a source of noise f(x, t) which is a stationary random field. This source generates, by the wave propagation, a field u(x, t) = (u?(x, t))?=1,··· ,N which people do record on long time intervalls.

  • dispersion relation

  • relation between

  • pseudo-differential equations

  • high frequency limit

  • wave equations

  • schrodinger equation


Voir Alternate Text

Publié par

Nombre de lectures

15

Langue

English

MathematicalmodelsforpassiveimagingI:generalbackground.YvesColindeVerdie`reSeptember25,2006AbstractPassiveimagingisanewtechnicswhichhasbeenprovedtobeveryefficient,forexampleinseismology:thecorrelationofthenoisyfieldsbe-tweendifferentpointsisstronglyrelatedtotheGreenfunctionofthewavepropagation.Theaimofthispaperistoprovideamathematicalcontextforthisapproachandtoshow,inparticular,howthemethodsofsemi-classicalanalysiscanbebeusedinordertofindtheasymptoticbehaviourofthecorrelations.IntroductionPassiveimagingisawaytosolveinverseproblems:ithasbeensuccesfullinseismologyandacoustics[2,3,11,15,16,20,21,23].Themethodisasfollows:letusassumethatwehaveamediumX(asmoothmanifold)andasmooth,deterministic(norandomnessinit)linearwaveequationinX.Wehopetorecover(partof)thegeometryofXfromthewavepropagation.WeassumethatthereissomewhereinXasourceofnoisef(x,t)whichisastationaryrandomfield.Thissourcegenerates,bythewavepropagation,afieldu(x,t)=(uα(x,t))α=1,∙∙∙,Nwhichpeopledorecordonlongtimeintervalls.WewanttogetsomeinformationonthepropagationofwavesfromBtoAinXfromthecorrelationmatrix1TZ1?CA,B(τ)=limu(A,t)u(B,tτ)dtTT0(equivalentlyTZ1βααCA,B(τ)=Tlimu(A,t)uβ(B,tτ)dt)T0InstitutFourier,Unite´mixtederechercheCNRS-UJF5582,BP74,38402-SaintMartind’He`resCedex(France);http://www-fourier.ujf-grenoble.fr/˜ycolver/1Foreverymatrix(aij),wewrite(aij)?:=(aji).1
whichcanbecomputednumericallyfromthefieldsrecordedatAandB.ItturnsoutthatCA,B(τ)iscloselyrelatedtothedeterministicGreen’sfunctionG(A,B,τ)ofthewaveequationinX.Itmeansthatonecanhopetorecover,usingFourieranalysis,thepropagationspeedsofwavesbetweenAandBasafunctionofthefrequency,or,inotherwords,theso-calleddispersionrelation.Ifthewavedynamicsistimereversalsymmetric,thecorrelationadmitsalsoasymmetrybychangeofτintoτ;thisobservationhasbeenusedforclocksynchronizationintheocean,see[17].ThegoalofthispaperistogivepreciseformulaeforCA,B(τ)inthehighfrequencylimitassumingarapidedecayofcorrelationsofthesourcef.Moreprecisely,wehave2smallparameters,oneofthementeringintothecorrelationdistanceofthesourcenoise,theotheroneinthehighfrequencypropagation.Thefactthatbothareofthesameorderofmagnitudeiscrucialforthemethod.Letusalsomentiononthetechnicalsidethat,ratherthanusingmodede-compositions,weprefertoworkdirectlywiththedynamics;inotherwords,weneedreallyatimedependentratherthanastationaryapproach.Modedecompo-sitionsareoftenusefull,buttheyareofnomuchhelpforgeneraloperatorswithnoparticularsymmetry.Forclarity,wewillfirstdiscussthenon-physicalcaseofafirstorderwaveequationliketheSchro¨dingerequation,thenthecaseofamoreusualwaveequa-tions(acoustics,elasticity).Themainresultexpresses,forτ>0,CA,B(τ)astheSchwartzkernelofΩ(τ)ΠwhereΠisasuitablepseudo-dierentialoperator(aΨDO),whoseprincipalsymbolcanbeexplicitelycomputed,andΩ(τ)isthe(semi-)groupofthe(damped)wavepropagation.Itimpliesthatwecanrecoverthedispersionrelation,i.e.theclassicaldynamics,fromtheknowledgeofalltwo-pointscorrelations.Inordertomakethepaperreadablebyalargesetofpeople,wehavetriedtomakeitself-containedbyincludingsectionsonpseudo-differentialoperatorsandonrandomfields.InSection1,westartwithaquitegeneralsettinganddiscussageneralformulaforthecorrelation(Equation(4)).Section2isdevotedtoexactformulaeincaseofanhomogeneouswhitenoise.InSection3,wediscusstheimportantpropertyoftimereversalsymmetrywhichplaysaprominentpartintheapplicationsandisalsousefullasanumerical.tsetInSection4,weintroducealargefamilyofanisotropicrandomfieldsandshowtherelationbetweentheirpowerspectraandtheWignermeasures.Section5containsthemainresultexpressingthecorrelationinthecaseofaSchro¨dingerwaveequation.Section6doesthesameincaseofawaveequation.TheshortSection7isaproblemsection.Section8isaaboutaquiteindependentissuerelativetocorrelationsofscat-teredwaves.2
Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text