Leaky Repeated Interaction Quantum Systems

icon

57

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

57

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Leaky Repeated Interaction Quantum Systems? Alain JOYE FOURIER INSTITUTfi ? Joint work with Laurent BRUNEAU (Universite de Cergy) & Marco MERKLI (Memorial University) CIRM, January 22nd 2009 – p.1/20

  • fermionic reservoir

  • he1 ?

  • hc ?

  • interaction quantum

  • hamiltonian hs

  • quantum sub-systems

  • quantum system

  • finite dimensional

  • universite de cergy


Voir icon arrow

Publié par

Nombre de lectures

26

Langue

English


Leaky Repeated Interaction Quantum Systems
Alain JOYE
INSTITUT
i f
FOURIER

Joint work with
Laurent BRUNEAU (Universite´ de Cergy) & Marco MERKLI (Memorial University)
nd
CIRM, January 22 2009 – p.1/20The Formal Model
Quantum system S :
Finite dimensional system, driven by Hamiltonian H on H , s.t.
S S
σ(H ) ={e , ,e } .
S 1 d
nd
CIRM, January 22 2009 – p.2/20The Formal Model
Quantum system S :
Finite dimensional system, driven by Hamiltonian H on H , s.t.
S S
σ(H ) ={e , ,e } .
S 1 d
Chain C of identical quantum sub-systems E ≡E , k = 1,2, :
k
C =E +E +E +E +
1 2 3 4
nd
CIRM, January 22 2009 – p.2/20The Formal Model
Quantum system S :
Finite dimensional system, driven by Hamiltonian H on H , s.t.
S S
σ(H ) ={e , ,e } .
S 1 d
Chain C of identical quantum sub-systems E ≡E , k = 1,2, :
k
C =E +E +E +E +
1 2 3 4
Each E is driven by the Hamiltonian H ≡H on H ≡H ,
k E E E E
k
k
dimH ≤∞
E
The chain C is driven by H ≡H +H +
C E E
1 2
on H ≡H ⊗H ⊗ , with [H ,H ] = 0, ∀j,k.
C E E E E
j k
1 2
nd
CIRM, January 22 2009 – p.2/20The Formal Model
Quantum system S :
Finite dimensional system, driven by Hamiltonian H on H , s.t.
S S
σ(H ) ={e , ,e } .
S 1 d
Chain C of identical quantum sub-systems E ≡E , k = 1,2, :
k
C =E +E +E +E +
1 2 3 4
Each E is driven by the Hamiltonian H ≡H on H ≡H ,
k E E E E
k
k
dimH ≤∞
E
The chain C is driven by H ≡H +H +
C E E
1 2
on H ≡H ⊗H ⊗ , with [H ,H ] = 0, ∀j,k.
C E E E E
j k
1 2
Fermionic reservoir R :
∞ -ly extended gas of indep. fermions at temperature β , driven by ”H ”
R
on ”H ” .
R
nd
CIRM, January 22 2009 – p.2/20The Formal Model
Complete system S +R+C
Formal Hilbert space H ⊗”H ”⊗H
S R E
nd
CIRM, January 22 2009 – p.3/20The Formal Model
Complete system S +R+C
Formal Hilbert space H ⊗”H ”⊗H
S R E
Interaction S−C
W operator on H ⊗H , k = 1,2, .
SE S E
k
nd
CIRM, January 22 2009 – p.3/20The Formal Model
Complete system S +R+C
Formal Hilbert space H ⊗”H ”⊗H
S R E
Interaction S−C
W operator on H ⊗H , k = 1,2, .
SE S E
k
Interaction S−R
W operator on H ⊗”H ”.
SR S R
nd
CIRM, January 22 2009 – p.3/206
The Formal Model
Complete system S +R+C
Formal Hilbert space H ⊗”H ”⊗H
S R E
Interaction S−C
W operator on H ⊗H , k = 1,2, .
SE S E
k
Interaction S−R
W operator on H ⊗”H ”.
SR S R
2
Evolution Let τ > 0 be a duration, λ = (λ ,λ )∈R be couplings
R E
For t = (m−1)τ +s, 0≤s<τ ,
S , R and E are driven by H +”H ”+H +λ W +λ W
m S R E R SR E SE
E evolve freely with H , ∀k =m
k E
nd
CIRM, January 22 2009 – p.3/20Leaky Repeated Interactions Quantum Systems
Pictorially
nd
CIRM, January 22 2009 – p.4/20

Voir icon more
Alternate Text