122
pages
Français
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
122
pages
Français
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Chapitre 1
Théorème limite central
Le théorème limite central nous dit que les sommes de v.a. indépendantes, de carré
intégrable, convenablement normalisées, se comportent asymptotiquement « en loi »
comme une v.a. gaussienne. Il explique l’importance centrale des lois gaussiennes dans
la théorie des probabilités et la statistique. Il complète la loi des grands nombres en
donnant une sorte de vitesse de convergence, permettant notamment de construire des
«intervalles de confiance» pour l’estimation d’un paramètre.
Pour donner un sens mathématique précis à cette notion de «comportement asymp-
totique en loi», il nous faut d’abord introduire la convergence en loi.
1.1 Convergence en loi
Nous énonçons deux définitions de la convergence en loi et nous admettrons leur
équivalence.
Définition 1.1 (convergence en loi). Notons F et F les fonctions de répartitionn
respectives des variables aléatoires réelles Y (n 1) et Y. On dit que la suite (Y )n n n1
converge en loi vers Y si
∀x point de continuité de F, F (x→) F(x). (1.1)n
n→+∞
Rappelonsquexestpointdecontinuitédelaf.d.r.F sietseulementsiF(x ) =F(x)
ou encore P(Y =x) = 0.
Définition 1.2 (convergence en loi). On dit que la suite (Y ) de variables aléa-n n1
toires réelles converge en loi vers la variable aléatoire réelle Y si
∀h continue bornéeR→R, Eh(Y→) Eh(Y). (1.2)n
n→+∞
Remarquons que si h est continue bornée, les h(Y ) et h(Y) sont des v.a. bornées,n
donc intégrables. Nous noterons la convergence en loi de Y vers Y parn
loi
Y→ Y.n
n→+∞
1Chapitre 1. Théorème limite central
La définition 1.1 est la plus concrète, surtout lorsque F est continue sur toutR, cas
souvent rencontré en pratique. En effet dans ce cas la convergence en loi équivaut à la
convergence simple sur R des fonctions de répartition et nous donne, pour tous réels
a < b, la convergence des P(Y ∈ I(a,b)) vers les P(Y ∈ I(a,b)), où I(a,b) désignen
n’importe lequel des 4 intervalles d’extrémités a et b.
La définition 1.2 est souvent plus commode pour établir les propriétés de la conver-
dgence en loi et se généralise immédiatement aux vecteurs aléatoires deR .
Définition 1.3 (convergence en loi de vecteurs aléatoires). On dit que la suite
d d(Y ) de vecteurs aléatoires deR converge en loi vers le vecteur aléatoire Y deR sin n1
d∀h continue bornéeR →R, Eh(Y→) Eh(Y). (1.3)n
n→+∞
Remarques 1.4 (les pièges de la convergence en loi). Pointons d’emblée des
différences importantes entre la convergence en loi et les autres modes de convergence
vus jusqu’ici.
1. Il n’est pas nécessaire, pour la convergence en loi de Y vers Y, que ces variablesn
aléatoires soient définies sur le même ( ,F,P).
2. Il n’y a pas unicité de la v.a. limite en loi. Si (Y ) converge en loi vers Y, ellen n1
converge aussi en loi vers n’importe quelle variable aléatoire Z ayant même loi que
Y (éventuellement définie sur un autre espace probabilisé). Ceci se voit facilement
1sur chacune des deux définitions de la convergence en loi . Réciproquement si Yn
converge en loi vers Y et aussi vers Z, alors Y et Z ont même loi. En effet en
utilisant la définition 1.2 et l’unicité de la limite d’une suite convergente de réels,
on voit que Eh(Y) = Eh(Z) pour toute h : R → R continue bornée. Par la
caractérisation des lois par leurs h-moments, cf. cours d’I.P.É., on en déduit que
Y et Z ont même loi. En résumé, s’il n’y a pas unicité de la v.a. limite en loi, il y
2a unicité de sa loi, que l’on appelera loi limite .
3. La convergence en loi n’est pas compatible avec l’addition. Si X converge en loin
versX etsiY convergeenloiversY,ilestfauxengénéralqueX +Y convergeenn n n
loi vers X+Y. En effet si c’était le cas, comme X converge en loi vers n’importen
0 0quelX ayant même loi queX,X +Y devrait converger aussi en loi vers X +Y.n n
0Le hic c’est que X +Y n’a pas forcément même loi que X +Y.
Après ces mises en garde, voyons un exemple assez typique où la convergence en
loi est le concept pertinent pour décrire le comportement asymptotique d’une suite de
variables aléatoires.
1Cette non-unicité de la limite est bien plus générale que pour les autres modes de convergence vus
jusqu’ici où l’on avait convergence vers n’importe quelle Z égale p.s. à Y. Bien sûr, si Y et Z sont
définies sur le même espace et sont égales p.s., elles ont même loi, mais la réciproque est grossièrement
fausse. Quand on lance deux dés, on n’est pas sûr d’obtenir un double!
2 Ceci incite à voir la convergence en loi de Y vers Y comme la convergence de la loi P versn Yn
la loi P . On pourrait d’ailleurs, en sortant nettement du programme de ce cours, donner un sensY
mathématique précis à cette convergence, appelée convergence étroite des mesures de probabilité en
notant que Eh(Y ) ne dépend que de h et de P .n Yn
2 Ch. Suquet, Cours I.S. 20061.1. Convergence en loi
Exemple 1.5 (une loi limite de records). Soit (X ) une suite de variables aléa-k k1
toiresindépendantesetdemêmeloiavecfonctionderépartitioncommuneF.Définissons
la suite de variables aléatoires «records» (M ) par :n n1
M := max X , n∈N . (1.4)n k
1kn
Connaissant F, il est facile d’obtenir la fonction de répartition G de M :n n
n
G (x) =P(M x) =P ∀k∈{1,...,n}, X x =P ∩{X x} .n n k k
k=1
En utilisant l’indépendance des X , puis le fait qu’elles ont même loi, on en déduit :k
nY n
G (x) = P(X x) = F(x) . (1.5)n k
k=1
Supposons désormais que lesX ont pour loi commune la loi exponentielle de paramètrek
a, alors
axF(x) = 1 e si x 0, F(x) = 0 si x< 0;
naxG (x) = 1 e si x 0, G (x) = 0 si x< 0.n n
Donc pour x réel fixé, on a lim G (x) = 0. La signification intuitive de ce résultatn→+∞ n
est que le record M finira par dépasser n’importe quel niveau x fixé pour n assezn
3grand . Afin de préciser cette idée, on cherche une suite non aléatoire tendant vers +∞
1 1 1 1à la même vitesse que M . On peut vérifier que EM = 1+ + ++ , doncn n a 2 3 n
1EM a lnn, cf. par exemple le corrigé de l’examen d’I.P.É. de janvier 2006. Cecin
1nous amène à étudier le comportement asymptotique de P(M a lnnx) :n
naxlnn lnn enax lnnP M x =G x+ = 1 e = 1 . (1.6)n n
a a n
On en déduit que :
lnn
axlim P M x = exp e . (1.7)n
n→+∞ a
Le calcul (1.6) est valable pour lnn ax, donc pour tout n∈N et tout x 0. Pour
x < 0 fixé, on aura lnn ax pour n n (x) donc (1.7) est valable pour tout x réel.0
1On peut donc dire qu’asymptotiquement, M est de l’ordre de grandeur de a lnn etn
que la dispersion aléatoire deM autour de cette valeur est donnée par la loi de fonctionn
de répartition :
axH(x) = exp e , x∈R. (1.8)
3N’appliquezpascetteremarqueausport,mêmeavecdopage.Cette«convergenceenprobabilitévers
l’infini » de M n’est possible que parce que chaque X peut elle même prendre une valeur supérieuren k
à x avec une probabilité non nulle. Si on prend pour X des variables de loi uniforme sur [0,1], la suitek
des records restera bornée par 1.
Ch. Suquet, Cours I.S. 2006 3Chapitre 1. Théorème limite central
On vérifie immédiatement que H est continue sur R, croissante (comme composée de
deux fonctions décroissantes) avec pour limites 0 en ∞ et 1 en +∞. C’est donc bien
une fonction de répartition. La loi de f.d.r. H est une loi de Gumbel.
D’après la définition 1.1, on peut reformuler la conclusion en disant que la suite de
1variables aléatoires M a lnn converge en loi vers une v.a. suivant la loi de Gumbeln
de f.d.r. H donnée par (1.8).
Une propriété bien commode de la convergence en loi est sa conservation par image
continue.
Proposition 1.6 (convergence en loi par image continue). Si Y converge en loin
vers Y, alors pour toute f continueR→R, f(Y ) converge en loi vers f(Y).n
Noter que l’on ne suppose pas f bornée surR.
Preuve. D’après la définition 1.2, il nous faut vérifier que pour toute fonction continue
bornée g :R→R,Eg(f(Y )) tend versEg(f(Y)) quandn tend vers +∞. Or la fonctionn
gf est continue surR par composition et bornée surR par sup |g(t)|. On sait part∈R
hypothèse que Eh(Y ) converge vers Eh(Y) pour toute h continue bornée sur R. Enn
appliquant ceci avec h =gf, on obtient la conclusion souhaitée.
La preuve ci-dessus se généralise immédiatement aux vecteurs aléatoires.
Proposition 1.7 (convergence en loi de vecteurs par image continue). Si les Yn
det Y sont des vecteurs aléatoires de R tels que Y converge en loi vers Y, alors pourn
d j jtoute f continueR →R , f(Y ) converge en loi vers f(Y) dansR .n
Le diagramme des convergences de la figure 1.1