46
pages
Documents
2011
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
46
pages
Documents
2011
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
LAFILTRATIONCANONIQUEDESPOINTSDETORSIONDESGROUPES
p
-DIVISIBLES
LAURENTFARGUES
AVECLACOLLABORATIONDEYICHAOTIAN
Re´sume´.
E´tantdonne´unentier
n
≥
1etungroupedeBarsotti-Tatetronque´d’e´chelon
n
etdedimension
d
surunanneaudevaluationd’ine´galescaracte´ristiques,nousdonnonsune
borneexplicitesursoninvariantdeHassequiimpliquequesafiltrationdeHarder-Narasimhan
posse`deunsous-groupelibrederang
d
.Lorsque
n
=1nousrede´montronse´galementlethe´ore`me
d’Abbes-Mokrane([1])etdeTian([37])pardesme´thodeslocales.Onappliquecelaauxfamilles
p
-adiquesdetelsobjetsetenparticuliera`certainesvarie´te´sdeShimuradetypePELafinde
montrerl’existencedefamillescompatiblesdesectionsdecertainescorrespondancesdeHecke
surdesvoisinagestubulairesexplicitesdulieuordinaire.
Abstract.
Givenaninteger
n
≥
1andatruncatedBarsotti-Tategroupoflevel
n
anddimension
d
overanunequalcharacteristicvaluationring,wegiveanexplicitboundonitsHasseinvariant
sothatitsHarder-Narasimhanfiltrationhasabreakwhichisfreeofrank
d
.When
n
=1we
alsogivealocalproofoftheAbbes-Mokrane([1])andTian([37])theorem.Weapplythisto
p
-adicfamiliesofsuchobjectsandinparticularprovetheexistenceofcompatiblefamiliesof
sectionsofsomeHeckecorrespondencesonexplicittubularneighborhoodoftheordinarylocus
insomePELtypeShimuravarieties.
1.
Introduction
1.1.
Soit
p
unnombrepremier.Soit
K
uneextensionvalue´ecomple`tede
Q
p
devaluationdiscre`te
et
A
unsche´maabe´liendedimension
g
sur
O
K
.Si
A
are´ductionordinairesurlecorpsre´siduel
de
K
et
n
≥
1estunnombreentier,lespointsde
p
n
-torsionde
A
sontmunisd’unefiltration
canonique
0
−→
A
[
p
n
]
0
−→
A
[
p
n
]
−→
A
[
p
n
]
e´t
−→
0
ou`
A
[
p
n
]
0
estunsche´maengroupesdetypemultiplicatifd’ordre
p
ng
et
A
[
p
n
]
e´t
este´taledumeˆme
ordre.Soit
S
ord
lelieuforme´despointsa`bonnere´ductionordinairedansl’espaceanalytiquerigide
p
-adique
S
associe´auxvarie´te´sdeSiegeldeniveaupremiera`
p
.C’estunouvertadmissibleausens
delage´ome´trierigidequel’onpeutvoircommeletubeaudessusdel’ouvertd’ordinarite´dela
re´ductionmodulo
p
desmode`lesentierscanoniquesdecesvarie´te´s.Soit
S
P
n
−→S
lereveˆtement
e´talefiniassocie´ausous-groupedecongruence
∗∗P
n
=
x
∈
GSp
2
g
(
Z
p
)
|
x
≡
mod
p
n
,
∗0lesblocsdelamatricepre´ce´dentee´tantdetaille
g
×
g
.Surlelieuordinaire,lesfiltrationpre´ce´dentes
semettentenfamilleetfournissentunesectiondureveˆtement
S
P
n
→S
.Lorsque
n
varie,ces
filtrationsve´rifientcertainesrelationsdecompatibilite´.
Surlare´ductionmodulo
p
desvarie´te´sdeSiegel,ilyauneformeautomorphealge´briquede
poids
p
−
1.Savaluationde´finitunefonction
≪
invariantdeHasse
≫
Ha:
S−→
[0
,
1]
.
Date
:20octobre2011.
2010
MathematicsSubjectClassification.
14K02,14K10,14L05,11F33.
Keywordsandphrases.
Groupesp-divisibles,p-divisiblegroups,varie´te´sdeShimura,Shimuravarieties.
1
2LAURENTFARGUES
1−Deplus,lelieud’ordinarite´de
S
estexactementlelieuHa(
{
0
}
).Seposealorslaquestionde
savoirsil’onpeute´tendrepourun
n
donne´lasectioncanoniquepre´ce´dentesurunvoisinagetu-
bulaireHa
−
1
([0
,ǫ
n
[)de
S
ord
pourun
ǫ
n
∈
Q
>
0
quel’onaimeraitpouvoircontroˆler.Laquestion
pre´ce´dentes’e´tendenunproble`meplusge´ne´ralconcernantlesgroupesdeBarsotti-Tatetronque´s
(pourl’e´tudedumeˆmeproble`medanslecasdesvarie´te´sdeShimuraautresquelesvarie´te´sde
Siegel,lecasdespointsdetorsiondessche´masabe´liensestinsuffisant).
Lecasdescourbeselliptiquesae´te´comple`tementre´soluparKatz([25])etLubin([30]).Dans
l’article[1]AbbesetMokraneontre´solulecasdesvarie´te´sabe´liennesdedimensionge´ne´rale
lorsque
n
=1,c’est-a`-direlecasdespointsde
p
-torsion.Ilsutilisentpourcelaladescription
donne´eparBlochetKatodescyclese´vanescents
p
-adiquessurlesvarie´te´sprojectiveslissesayant
bonnere´duction,couple´ea`lathe´oriedelaramificationde´veloppe´eparAbbesetSaitodans[2].
Dansl’article[37],Tianae´tendulere´sultatd’Abbes-MokraneaucasdesgroupesdeBarsotti-Tate
tronque´sd’e´chelon1.Ilfaitusagepourceladere´solutionsdetelsgroupespardessche´masabe´liens
etdesre´sultatsdeBloch-Katosurlescyclese´vanescents
p
-adiquesassocie´s.Dansl’article[3]
AndreattaetGasbarriontretrouve´lere´sultatd’Abbes-Mokranepard’autresme´thodesglobales,
c’est-a`-direfaisantintervenirdessche´masabe´liens.Conradamontre´dans[10]lasurconvergence
enge´ne´ralpourlespointsde
p
n
-torsiondessche´masabe´lienspourtout
n
maissansborneexplicite.
Lecasdesvarie´te´smodulairesdeHilbertae´te´e´tudie´ende´tailsdans[26],[21]et[22].Notons
enfinquedans[32],desre´sultatssurlessous-groupescanoniquesdeniveauquelconqueonte´te´
obtenuspasdesme´thodescomple`tementdiffe´rentes.Cesre´sultatsconcernentd’autresfiltrations
dessche´masengroupesfinisetplatsquecellesquenousutilisons(cesfiltrationsinterviennent
toutdemeˆmedanslasection3ou`nouslesappelonsfiltrationsderamificationinfe´rieurenaı¨ves,
maisuniquementcommeinterme´diairepourene´tudierd’autres).
1.2.
Nouscommenc¸onstoutd’abordparrede´montrerlethe´ore`med’Abbes-MokraneetTianpar
desme´thodeslocalesnefaisantpasintervenirdesche´masabe´liens(cependantcontrairementa`
AbbesetMokrane,nousnetraitonspasdanscetextelecasdessche´massemi-abe´liens).Nous
pre´cisonse´galementlecomportementdeleursfiltrationsvis-a`-visdeladualite´etdoncdespo-
larisations.Voicilethe´ore`mede´montre´danslasection6.Onfixeuneextensionvalue´ecomple`te
K
|
Q
p
pourunevaluationa`valeursdans
R
.Onsupposedeplusque
p
6
=2
,
3danslerestedecette
introduction.
The´ore`me
(The´ore`me4point(2)etCorollaire2)
.
Soit
G
ungroupedeBarsotti-Tatetronque´
d’e´chelon
1
,dehauteur
h
etdedimension
d<h
sur
O
K
.Soit
(
G
λ
AS
)
λ>
0
lafiltrationd’Abbes-Saito
1de
G
.SupposonsquesoninvariantdeHasse
w
∈
[0
,
1]
soitstrictementpluspetitque
2
.Alors
pλwpour
p
−
1
≤
λ<
p
−
1
(1
−
w
)
legroupe
G
AS
estderang
d
,inde´pendantde
λ
.Ilenestdemeˆme
de
G
D
,lafiltratione´tantalorsderang
h
−
d
.Pour
λ
commepre´ce´demment,vial’accouplement
G
(
O
K
)
×
G
D
(
O
K
)
→
F
p
(1)
,onal’e´galite´
(
G
D
)
λ
AS
(
O
K
)
⊥
=
G
λ
AS
(
O
K
)
.
Lade´monstrationdecethe´ore`mefaitintervenirunee´tudefinedel’applicationdeHodge-Tate
dessche´masengroupesfinisetplatssur
O
K
.Danslasection6nousde´montronsd’autresre´sultats
concernantcetteapplicationquisontutilesdanslasuite,notammentlere´sultatsuivant.
The´ore`me
(The´ore`me4point(3))
.
Sousleshypothe`sesduthe´ore`mepre´ce´dentlare´ductiondu
cranderang
d
delafiltrationde
G
modulolese´le´mentsde
O
K
devaluationsupe´rieureoue´gale
a`
1
−
w
coı¨ncideaveclenoyaudumorphismedeFrobeniusdelare´ductionde
G
.
L’undesre´sultats-clefspourlasuiteeste´galementlethe´ore`mesuivant(quidenotreav