50
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
50
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Langue
English
nIt.GorLdeuucrteoinn,t.ShTmoesnoSvlnigXAystsmesMBWnalasysiPracticalNear-Collisions
ontheCompressionFunctionofBMW
U(inl.uGaëtanLeurentandSørenS.Thomsen
&TD)UPUniversityofLuxembourg
TechnicalUniversityofDenmark
artccilaeNra-FSE2011
oCllsioisnnohteoCpmerssoinuFcnitnofoMBWSFE021C1nolcsu1oi/n42
42/21102ESFWMBfonoitcnuFnoisserpmoCehtnosnoisilloC-raeNlacitcarP)UTD&ul.inU(nesmohT.S,tnerueL.GTheSHA-3competition
I
Notselectedforthethirdround
I
BMWwasthe
fastest
second-roundcandidateinsoftware
I
Winnerin2012?
I
5finalistsinDecember2010
I
51validsubmissions
I
14inthesecondround(July2009)
TheSHA-3competition
noisulcnoCsisylanaWMBsmetsysXAgnivloSnoitcudortnI
nIt.GorLudtcoinoSvlnigXAystsmesMBWnaaHashFunctionDesign
ylsI
Buildasmall
compressionfunction
,and
iterate
.
ueertn,.SI
Cutthemessageinchunks
M
0
,...
M
k
I
H
i
=
f
(
M
i
,
H
i
−
1
)
I
F
(
M
)=
Ω
(
H
k
)
hTmoMM01
sVI
neU(inl.u&f
TD)UH0
rPcaitclaeNf
raC-loilisM2
H1
nosnohteoCf
pmerssoinM3
H2
uFcnitnosifof
MBWH3
SFE021C1nolcsu3oi/n42
42/41102ESFWMBfonoitcnuFnoisserpmoCehtnosnoisilloC-raeNlacitcarP)UTD&ul.inU(nesmohT.S,tnerueL.GCompressionFunctionAttacks
I
Becausegoodcompressionimplygoodhashfunction
I
Becauseit’seasier:moredegreesoffreedom
Fistresultsusuallytargetthe
compressionfunction
Wang’sandStevens’sattacksare
basedonthedBBpath
treceugoR:9002etacfii
noisilloC:5002s
I
1996:Semi-free-startcollisions
I
1993:Free-startcollisions
MD5cryptanalysis
[denBoerandBosselaers]
[Dobbertin]
[Wang
et.al
]
[Stevens
et.al
]
IInoisulcnoCsisylanaWMBsmetsysXAgnivloSnoitcudortnI
noisulcnoCsisylanaWMBsmetsysXAgnivloSnoitcudortnICompressionFunctionAttacks
I
Becausegoodcompressionimplygoodhashfunction
I
Becauseit’seasier:moredegreesoffreedom
Fistresultsusuallytargetthe
compressionfunction
Wang’sandStevens’sattacksare
basedonthedBBpath
cfiitreceugoR:9002eta
C:5002snoisillo
I
1996:Semi-free-startcollisions
I
1993:Free-startcollisions
MD5cryptanalysis
[denBoerandBosselaers]
[Dobbertin]
[Wang
et.al
]
[Stevens
et.al
]
42/41102ESFWMBfonoitcnuFnoisserpmoCehtnosnoisilloC-raeNlacitcarP)UTD&ul.inU(nesmohT.S,tnerueL.GII
nIt.GorLudtcoinM
H
oSvlnigXAystsmesMBWaBlueMidnightWish
xPyf
0
Q
a
AddElement
f
1
Qb
anlf2
syiI
Widepipe:eachlineis16words(32or64bits)
I
Mostofthediffusionhappensin
f
1
I
ARX
:Addition,Rotations,Xors
ueertn,.ShTmoesnU(inl.u&TD)UrPcaitclaeNraC-loilisnosnohteoCpmerssoinuFcnitnosfoMBWH
SFE2oCcnulisseedetails
1015o/n42
noisulcnoCsisylanaWMBsmetsysXAgnivloSnoitcudortnISolvingAXSystems
x
⊕
Δ
=
x
δ
I
Onaverageonesolution
I
Easy
tosolvebecauseit’saT-function.
I
GuessLSB,check,andmovetonextbit
I
Forrandom
δ
,
Δ
,mostofthetimethesystemis
inconsistent
I
Howeasyexactly?
I
Backtrackingis
exponential
intheworstcase:
x
⊕
0x80000000
=
x
ImportantExample
42/61102ESFWMBfonoitcnuFnoisserpmoCehtnosnoisilloC-raeNlacitcarP)UTD&ul.inU(nesmohT.S,tnerueL.G
42/61102ESFWMBfonoitcnuFnoisserpmoCehtnosnoisilloC-raeNlacitcarP)UTD&ul.inU(nesmohT.S,tnerueL.GSolvingAXSystems
x
⊕
Δ
=
x
δ
I
Onaverageonesolution
I
Easy
tosolvebecauseit’saT-function.
I
GuessLSB,check,andmovetonextbit
I
Forrandom
δ
,
Δ
,mostofthetimethesystemis
inconsistent
I
Howeasyexactly?
I
Backtrackingis
exponential
intheworstcase:
x
⊕
0x80000000
=
x
ImportantExample
noisulcnoCsisylanaWMBsmetsysXAgnivloSnoitcudortnI
CsisylanaWMBsmetsysXAgnivloSnoitcudortnISolvingAXSystems
x
⊕
Δ
=
x
δ
I
Onaverageonesolution
I
Easy
tosolvebecauseit’saT-function.
I
GuessLSB,check,andmovetonextbit
I
Forrandom
δ
,
Δ
,mostofthetimethesystemis
inconsistent
I
Howeasyexactly?
I
Backtrackingis
exponential
intheworstcase:
x
⊕
0x80000000
=
x
ImportantExample
42/61102ESFWMBfonoitcnuFnoisserpmoCehtnosnoisilloC-raeNlacitcarP)UTD&ul.inU(nesmohT.S,tnerueL.Gnoisulcno
42/61102ESFWMBfonoitcnuFnoisserpmoCehtnosnoisilloC-raeNlacitcarP)UTD&ul.inU(nesmohT.S,tnerueL.GSolvingAXSystems
x
⊕
Δ
=
x
δ
I
Onaverageonesolution
I
Easy
tosolvebecauseit’saT-function.
I
GuessLSB,check,andmovetonextbit
I
Forrandom
δ
,
Δ
,mostofthetimethesystemis
inconsistent
I
Howeasyexactly?
I
Backtrackingis
exponential
intheworstcase:
x
⊕
0x80000000
=
x
ImportantExample
noisulcnoCsisylanaWMBsmetsysXAgnivloSnoitcudortnI