Integrating Total Physical Response Strategy in a Level I Spanish ...

icon

5

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

5

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

  • cours - matière : spanish
Integrating Total Physical Response Strategy in a Level I Spanish Class David E. Wolfe, Ph.D. Temple University • Gwendolyn Jones Bishop McDevitt High School • Wyncote, PA Reprinted from Foreign Language Annals, 14, N. 4, 1982 David E. Wolfe (Ph.D., The Ohio State University) is Professor of Foreign Language Education, Temple University, Philadelphia, PA; Gwendolyn Jones (M.Ed.
  • spanish course
  • explicit instruction for the rest of the meeting
  • tpr-world
  • moderate impact on instruction with tpr
  • método tpr español
  • modern language journal
  • test
Voir icon arrow

Publié par

Nombre de lectures

20

Langue

English

MATH 203, Section 001 Fall, 2011 Exam 4
Name
Solutions
1. LetP1denote the vector space of polynomials of degree at most 1.Let   a   3 T:P1Rbe given byT(ax+b) =ab. DetermineifTis a linear a transformation. Giveclearreasons for your answer.    10 2    T(5(2x=+ 3))T(10x+ 15)= 150, but5T(2x6 == 5+ 3) 10 2   10   306=T(5(2x+ 3)), soTis not a linear transformation. 10 (Of course, there are many other examples that work.)
Tofmrarsn.ntaoiiseartalin
× T.onorsftimaraennartonsiilat
2 2. SupposethatBis the basis forRsuch that the change of coordinate   4 1 matrixPBfromBto the standard basis is given byPB=.If 3 0   2 [v~]Bfind= ,~v. 3     4 12 5 v~=PB[~v]B= =. 3 03 6 Answer:   5 6
2 3. SupposethatBis the basis forRsuch that the change of coordinate   4 1 matrixPBfromBto the standard basis is given byPB=. 3 0 Find the change of basis matrix from the standard basis toB.
1 The change of basis matrix from the standard basis toBisP= B     1 01101 0 1 3 ( )= () =4. det(PB)3 3 43 41 3
Answer:   1 0 3 4 1 3
   1 1 2 4. Letthe basesBandCforRbe given byB={,}and 11    2 1 P C={,}. Findthe change of basis matrixC←B. 1 0   1 1 P P The matrixC←Bis given byC←B=, so we must 11      C C 1 21 12 solve the equations=x+yand=x+ 1 101 1   1 y. Wecan do both of these simultaneously if we row-reduce 0 the matrix whose first two columns are the elements ofCand whose second two columns are the elements ofB. [Ofcourse, it is fine to do these systems separately.]     2 1 11 10 10 11 11 ∼ ∼. 1 0 11 21 01 111 3   11 P Therefore,C←B=. 1 3
Answer:   11 1 3
    1 1 1     3 5. Suppose thatBis the basis forRgiven by{1,1,0} 1 0 0 3P andCis a basis forRsuch that the change of basis matrixC←Bis    1 0 23    1 1Find 2.1 . 32 11 C         3 11 13 1         Since+ 1 + 02 = 1,12 =. Therefore, 1 10 01 1 B       3 10 21 3       2 =1 11 1= 1. 1 31 22 1 C
Answer:   3   1 2   1 01   6. Oneeigenvalue of the matrixA= 11 0Find an eigen-is 2. 1 01 vector corresponding to the eigenvalue 2.   x   We want a non-zero vector~v=ysuch thatA~v= 2v~, that z is, we want a non-trivial solution of the homogeneous system ~ Av~2~v= 0find such a solution, we row-reduce the coefficient. To     1 0 11 01 101 1     matrix.13 003 10 1.Therefore, 3 1 00 01 000 0 z zis free, withx=zandy=one eigenvector is. Hence, 3   3   1. 3
Answer:   3   1 3
  02 0   7. Findthe characteristic polynomialp(λ) of the matrixA= 231 . 0 1 1   λ2 0   p(λ) =det(λIA) =det(2λ) =3 1λ[(λ3)(λ1) + 01λ1 3 2 1] + 2[2(λ1)] =λ4λ+ 8λ4.
3 2 p(λ) =:λ4λ+ 8λ4
  32 8. LetA= .Find all eigenvalues ofA. 1 4
The characteristic polynomial ofAisp(λ) =det(λIA) =   λ2 2 2 det=λ+ 7λ= (+ 10λ2)(λ5). Therefore, 1λ4 the eigenvalues are2and5.
Answer: 2and5
  3 5 01 211 2   9. LetA= .Then the characteristic polynomial ofAis   1 21 0 6 3 02 4 32 54 3 2 p(λ) =λ3λ26λ15λ+7. FindA3A26A15A+A. [Hint: The easiest way to do this is to use the Cayley-Hamilton Theorem.]
4 32 By the Cayley-Hamilton Theorem,p(A) =A3A26A15A+ 7I= 0. 5 43 2 Long division gives thatλ3λ26λ15λ+λ=λp(λ)6λ, 5 43 2 soA3A26A15A+A=AP(A)6A=A06A=   1830 06 12 6126 .   612 6 0 3618 012
Answer:   1830 06 12 6126   612 6 0 3618 012   3 4 10. LetAThen the eigenvalues of= .Aare1 and 5, with 2 1    1 2 corresponding eigenvectorsand .Find a matrixPsuch 1 1 1 thatP APis a diagonal matrixDand findD.
We takePto bePBwhereBis a basis consisting of eigenvectors    1 2 ofAlinearly independent eigenvectors,. Sinceand are 1 1   1 2 we can takeP=matrix. TheDhas the corresponding 1 1   1 0 eigenvalues on the main diagonal, soD=. 0 5
  1 2 P=: 1 1
  1 0 D=: 0 5
Voir icon more
Alternate Text