Hardness Results and Efficient Algorithms for Graph Powers

icon

41

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

41

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Hardness Results and Efficient Algorithms for Graph Powers Authors: Van Bang Le, Ngoc Tuy Nguyen University of Rostock, Germany Speaker: Ngoc Tuy Nguyen

  • ngoc tuy

  • efficient algorithms

  • split graph

  • graph powers

  • van bang

  • positive integer

  • open problems


Voir icon arrow

Publié par

Langue

English

Hardness Results and Efficient Algorithms for Graph PowersAuthors:Van Bang Le, NgocTuyNguyenUniversity of Rostock, GermanySpeaker:NgocTuyNguyen
ƒƒƒƒIntroductionOutlineNP-completeness results for recognizing powers of graphsSEfPfiLcIieT ntG aRlAgoPriHthamnsd  fCorU sBoElv iOnFg  SGQRUAPAHR EW OITFH S GTIRROTNH GLY1 0CHORDAL Conclusion and open problems2
ƒGraph powersnIrtdocuk-thpower and k-throot of graph.Let H = (V, E) be a graph. Let kbe a positive integer. The graph G= (V, Ek)is thek-thpowerof H, and His called ak-throot of G,where Ek= { xy| 1 dH(x,y)k}.The graph HSquare of Hitno3
ƒGraph powersnIrtdocuk-thpower and k-throot of graph.Let H = (V, E) be a graph. Let kbe a positive integer.The graph G= (V, Ek)is thek-thpowerof H,and His called ak-throot of G,where Ek= { xy| 1 dH(x,y)k}.The graph HSquare of HCube of Hitno4
Voir icon more
Alternate Text