Full discretization of distributed control problems for parabolic equations

icon

69

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

69

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Full discretization of distributed control problems for parabolic equations Franck BOYER? joint work with Florence HUBERT? and Jerome LE ROUSSEAU† ? LATP, Aix-Marseille Universite †MAPMO, Universite d'Orleans IHP, November 2010 1/ 58 F. Boyer Control of full-discrete parabolic equations

  • control problem

  • equations

  • aix-marseille universite

  • full-discrete parabolic

  • time discretization schemes


Voir icon arrow

Publié par

Nombre de lectures

23

Langue

English

Motivation Factorization of cyclotomic polynomials Some steps to abelian extensions Conclusion
polynomials over finite nisticopylimenomial-t
Factorization of determi
Ivan Boyer
Doctorant sous la direction de Jean-François Mestre Institut Mathématique de Jussieu
AGCT-13 — C.I.R.M. March 15, 2011
I. Boyer
Factorization inFp[X]
fields
in
Motivation Factorization of cyclotomic polynomials Some steps to abelian extensions Conclusion Algorithmic aspect.
Context Schoof’s algorithm
Remark Thedeterministicaspect iscrucialin this talk : everything be-comes “trivial” in probabilistic time. In the same way, assuming G.R.H. would withdraw some of the interest of the following !
I. Boyer
Factorization in
Fp[
X]
Motivation Factorization of cyclotomic polynomialsContext Some steps to abelian extensionsSchoof’s algorithm Conclusion Factorization inFp[X]– Square roots in
Fp.
IThere are deterministic algorithms inFp[X](egBerlekamp’s algorithm) but exponential in logp. INo deterministic polynomial-time algorithm is known for factorization inFp[X]. Even in degree 2 ! IEasy to decide ifaFpis a square (Legendre symbol, or more generally the g.c.d. withxpx) IA lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s aP–problem. IHowever, thanks toSchoof’s algorithm, we can say some-thing indeterministictime.
I. Boyer
Factorization inFp[X]
Motivation Factorization of cyclotomic polynomialsContext Some steps to abelian extensionsSchoof’s algorithm Conclusion Factorization inFp[X]– Square roots in
I
I
I
I
I
Fp.
There are deterministic algorithms inFp[X](egBerlekamp’s algorithm) but exponential in logp. No deterministic polynomial-time algorithm is known for factorization inFp[X] in degree 2 !. Even Easy to decide ifaFpis a square (Legendre symbol, or more generally the g.c.d. withxpx) A lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s aP–problem. However, thanks toSchoof’s algorithm, we can say some-thing indeterministictime.
I. Boyer
Factorization inFp[X]
Motivation Factorization of cyclotomic polynomialsContext Some steps to abelian extensionsSchoof’s algorithm Conclusion Factorization inFp[X]– Square roots in
I
I
I
I
I
Fp
.
There are deterministic algorithms inFp[X](egBerlekamp’s algorithm) but exponential in logp. No deterministic polynomial-time algorithm is known for factorization inFp[X]. Even in degree 2 ! Easy to decide ifaFpis a square (Legendre symbol, or more generally the g.c.d. withxpx) A lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s aP–problem. However, thanks toSchoof’s algorithm, we can say some-thing indeterministictime.
I. Boyer
Factorization inFp[X]
Motivation Factorization of cyclotomic polynomialsContext Some steps to abelian extensionsSchoof’s algorithm Conclusion Factorization inFp[X]– Square roots in
I
I
I
I
I
Fp
.
There are deterministic algorithms inFp[X](egBerlekamp’s algorithm) but exponential in logp. No deterministic polynomial-time algorithm is known for factorization inFp[X]. Even in degree 2 ! Easy to decide ifaFpis a square (Legendre symbol, or more generally the g.c.d. withxpx) A lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s aP–problem. However, thanks toSchoof’s algorithm, we can say some-thing indeterministictime.
I. Boyer
Factorization inFp[X]
Voir icon more
Alternate Text