Fix Mahonian Calculus II: further statistics

icon

13

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

13

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

2007/08/30 Fix-Mahonian Calculus, II: further statistics Dominique Foata and Guo-Niu Han ABSTRACT. Using classical transformations on the symmetric group and two transformations constructed in Fix-Mahonian Calculus I, we show that several multivariable statistics are equidistributed either with the triplet (fix,des,maj), or the pair (fix,maj), where “fix,” “des” and “maj” denote the number of fixed points, the number of descents and the major index, respectively. 1. Introduction First, recall the traditional notations for the q-ascending factorials (a; q)n := { 1, if n = 0; (1? a)(1? aq) · · · (1? aqn?1), if n ≥ 1; (a; q)∞ := ∏ n≥1 (1? aqn?1); and the q-exponential (see [GaRa90, chap. 1]) eq(u) = ∑ n≥0 un (q; q)n = 1(u; q)∞ . Furthermore, let (An(Y, t, q)) and (An(Y, q)) (n ≥ 0) be the sequences of polynomials respectively defined by the factorial generating functions ∑ n≥0 An(Y, t, q) un (t; q)n+1 := ∑ s≥0 ts ( 1? u s ∑ i=

  • n?m ∑

  • fix ?

  • can also

  • let ?

  • jj jj

  • bijections appear

  • group sn let


Voir Alternate Text

Publié par

Nombre de lectures

11

Langue

English

2007/08/30
Fix-Mahonian Calculus, II: further statistics Dominique Foata and Guo-Niu Han A BSTRACT . Using classical transformations on the symmetric group and two transformations constructed in Fix-Mahonian Calculus I, we show that several multivariable statistics are equidistributed either with the triplet (fix,des,maj), or the pair (fix,maj), where “fix,” “des” and “maj” denote the number of fixed points, the number of descents and the major index, respectively.
1. Introduction First, recall the traditional notations for the q -ascending factorials ( a ; q ) n := (11 a )(1 aq )    (1 aq n 1 ) iiff nn =10;; ( a ; q ) := Y (1 aq n 1 ); n 1 and the q -exponential (see [GaRa90, chap. 1]) e q ( u ) = n X 0 ( q ; uq n ) n =( u ;1 q ) Furthermore, let ( A n ( Y t q )) and ( A n ( Y q )) ( n 0) be the sequences of polynomials respectively defined by the factorial generating functions (1 1) n X 0 A n ( Y t q )( t ; qu ) nn +1 := s X 0 t s 1 u i = s X 0 q i 1 (( uuY ;; qq )) ss ++11 ; (1 2) n X 0 A n ( Y q )( q ; uq n ) n := 1 1 u q 1 (( uuY ;; qq )) Of course, (1.2) can be derived from (1.1) by letting the variable t tend to 1, so that A n ( Y q ) = A n ( Y 1  q ). The classical combinatorial interpretation for those classes of polynomials has been found by Gessel and Reutenauer [GeRe93] (see Theorem 1.1 below). For each permutation σ = σ (1) σ (2)    σ ( n ) from the symmetric group S n let i σ := σ 1 denote 1
Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text