Entire curves and algebraic differential equations

icon

66

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

66

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Entire curves and algebraic differential equations Jean-Pierre Demailly Institut Fourier, Universite de Grenoble I, France April 16 2009, Saint-Martin d'Heres IF - IMPA Conference Jean-Pierre Demailly (Grenoble I), 16/04/2009 Entire curves and algebraic differential equations / IF - IMPA

  • constant holomorphic map

  • simply connected

  • open subset

  • has no

  • dimensional manifold

  • liouville's theorem

  • entire curves


Voir icon arrow

Publié par

Langue

English

Poids de l'ouvrage

1 Mo

Entire curves and aic differential equ
algebr
Jean-Pierre
ations
Demailly
InstitutFourier,Universit´edeGrenobleI,France
April
16 2009, Saint-Martin d’Heres ` IF - IMPA Conference
Jean-Pierre Demailly (Grenoble I), 16/04/2009
Entire curves and algebraic differential equations / IF - IMPA
Entire curves
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold.
Jean-Pierre Demailly (Grenoble I), 16/04/2009
Entire curves and algebraic differential equations / IF - IMPA
Entire curves
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold. IfXis aboundedopen subset ΩCn, then there are no entire curvesf:CΩ (Liouville’s theorem)
Jean-Pierre Demailly (Grenoble I), 16/04/2009
Entire curves and algebraic differential equations / IF - IMPA
Entire curves
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold. IfXis aboundedopen subset ΩCn, then there are no entire curvesf:CΩ (Liouville’s theorem) X=C r{01∞}=C r{01}has no entire curves (Picard’s theorem)
Jean-Pierre Demailly (Grenoble I), 16/04/2009
Entire curves and algebraic differential equations / IF - IMPA
Entire curves
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold. IfXis aboundedopen subset ΩCn, then there are no entire curvesf:CΩ (Liouville’s theorem) X=C r{01∞}=C r{01}has no entire curves (Picard’s theorem) A complex torusX=CnΛ (Λ lattice) has a lot of entire curves. AsCsimply connected, everyf:CX=CnΛ n ˜ lifts asf:CC,
˜ ˜ ˜ f(t) = (f1(t)    fn(t))
˜ andfj:CCcan be arbitrary entire functions.
Jean-Pierre Demailly (Grenoble I), 16/04/2009
Entire curves and algebraic differential equations / IF - IMPA
Projective
algebraic
Consider
now
varieties
the complex
projective
Pn=Pn(Cn+1r{0})CC=
Jean-Pierre Demailly (Grenoble I), 16/04/2009
n-space
[z] = [z0
:z1
:  :zn]
Entire curves and algebraic differential equations / IF - IMPA
Voir icon more
Alternate Text