English Courses

icon

3

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

3

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

  • cours - matière potentielle : the literature
  • cours - matière potentielle : consent
  • leçon - matière potentielle : 25 -40 pages per night
  • cours - matière potentielle : social studies
  • exposé - matière potentielle : work
  • expression écrite
  • cours - matière : literature
  • leçon - matière potentielle : 20 -35 pages per night
  • expression écrite - matière potentielle : quality of student
  • leçon - matière potentielle : critical analysis
  • cours - matière potentielle : at language
  • expression écrite - matière potentielle : processes
  • expression écrite - matière potentielle : westerners
  • revision - matière potentielle : process
  • expression écrite - matière potentielle : practice
  • expression écrite - matière potentielle : by seutonius
  • cours - matière potentielle : load
  • expression écrite - matière potentielle : assignments
  • expression écrite - matière potentielle : process
  • cours - matière potentielle : 1 unit
  • cours - matière : history
  • cours - matière : history - matière potentielle : history
  • exposé - matière potentielle : to the class
  • expression écrite - matière potentielle : from india
1 English Courses English I: Ancient Literature Full year – 1 unit This course is taught in conjunction with History I: Ancient Cultures. Please see the history course descriptions for the write- up of the class. This course is a requirement for ninth grade students. English II: American Studies Prerequisite: sophomore standing Full year course - 1 unit Designed to correlate closely with History II: American Studies English II is a survey course of American literature of all genres and various perspectives.
  • requirement for ninth grade students
  • literature prerequisite
  • economic development policies
  • literature
  • world
  • history
  • language
  • students
  • course
Voir icon arrow

Publié par

Nombre de lectures

20

Langue

English

Lecture 14: Cauchy-Riemann Equations:Polar Form
Dan Sloughter FurmanUniversity Mathematics39
March 31, 2004
14.1 Polarform of the Cauchy-Riemann Equations Theorem 14.1.Supposefis defined on anneighborhoodUof a point 0 z0=r0e, f(re) =u(r, θ) +iv(r, θ), andur,uθ,vr, andvθexist onUand are continuous at (r0, θ0). Iffis differentiable atz0, then r0ur(r0, θ0) =vθ(r0, θ0) anduθ(r0, θ0) =r0vr(r0, θ0) and 0 −0 f(z0) =e(ur(r0, θ0) +ivr(r0, θ0)). Proof.By the chain rule from multi-variable calculus, ∂u ∂u∂x ∂u∂y = + ∂r ∂x∂r ∂y∂r and ∂u ∂u∂x ∂u∂y = +. ∂θ ∂x∂θ ∂y∂θ Sincex=rcos(θ) andy=rsin(θ), we have ur=uxcos(θ) +uysin(θ)
1
and uθ=uxrsin(θ) +uyrcos(θ). Similarly, vr=vxcos(θ) +vysin(θ) and vθ=vxrsin(θ) +vyrcos(θ). Nowfis differentiable atz0, and so satisfies the Cauchy-Riemann equations atz0. Thatis, ux(r0, θ0) =vy(r0, θ0) anduy(r0, θ0) =vx(r0, θ0). Hence vr(r0, θ0) =uy(r0, θ0) cos(θ) +ux(r0, θ0) sin(θ) and vθ(r0, θ0) =uy(r0, θ0)rsin(θ) +ux(r0, θ0)rcos(θ). It follows that r0ur(r0, θ0) =vθ(r0, θ0) anduθ(r0, θ0) =r0vr(r0, θ0) The final statement of the theorem is left as an exercise. Theorem 14.2.Supposefis defined on anneighborhoodUof a point 0 z0=r0e, f(re) =u(r, θ) +iv(r, θ), andur,uθ,vr, andvθexist onUand are continuous at (r0, θ0). If r0ur(r0, θ0) =vθ(r0, θ0) anduθ(r0, θ0) =r0vr(r0, θ0), thenfis differentiable atz0. Proof.The proof is left as a homework exercise. Example 14.1.Forz6= 0, let 1 f(z) =. 2 z If we writez=re, then 1 1 f(z= (cos(2) =θ)isin(2θ)). 2 22 r er 2
Hence, in the notation of the above theorems, 1 u(r, θcos(2) =θ) 2 r and 1 v(r, θ) =sin(2θ). 2 r It follows that 2 2 ur(r, θ) =cos(2θ) anduθ(r, θ) =sin(2θ) 3 2 r r and 2 2 vr(r, θsin(2) =θ) andvθ(r, θ) =cos(2θ). 3 2 r r Thus rur(r, θ) =vθ(r, θ) anduθ(r, θ) =rvr(r, θ), and sofis differentiable at allz6= 0.Moreover,   2 2 0 −f(z) =ecos(2θ) +isin(2θ) 3 3 r r 2 2=e e 3 r 2 3=e 3 r 2 =. 3 z
3
Voir icon more
Alternate Text