DYNAMICAL SYSTEMS TRANSFER OPERATORS

icon

57

pages

icon

Documents

2010

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

57

pages

icon

Documents

2010

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

DYNAMICAL SYSTEMS, TRANSFER OPERATORS and FUNCTIONAL ANALYSIS Brigitte Vallee, Laboratoire GREYC (CNRS et Universite de Caen) Seminaire CALIN, LIPN, 5 octobre 2010

  • euclidean algorithm

  • probabilistic analysis

  • seminaire calin

  • analytical properties

  • generating function

  • transfer operator

  • universite caen

  • dynamical analysis


Voir icon arrow

Publié par

Publié le

01 octobre 2010

Nombre de lectures

89

DYNAMICALSYSTEMS,TRANSFEROPERATORS

andFUNCTIONALANALYSIS

Brigitte
Valle´e
,LaboratoireGREYC

(CNRSetUniversite´deCaen)

Se´minaireCALIN,LIPN,5octobre2010

mhtiroglAnaedilcuEehtfosisylanacitsilibaborP⇓noitcnufgnitarenegehtfoseitreporplacitylanA⇓rotareporefsnartehtfoesrevnI-isauQehtfoseitreporplacitylanA⇓rotareporefsnartehtfoseitreporplartcepS⇓sehcnarbehtfoseitreporpcirtemoeG⇓noisividehtfoseitreporpcitemhtirA⇓mhDynamical

tanalysis

ifo

ra

oEuclidean

gAlgorithm
.

lAnaedilcuEA
edilcuEehtfosisylanacitsilibaborP⇓noitcnufgnitarenegehtfoseitreporplacitylanA⇓rotareporefsnartehtfoesrevnI-isauQehtfoseitreporplacitylanA⇓rotareporefsnartehtfoseitreporplartcepS⇓sehcnarbehtfoseitreporpcirtemoeGAEuclideanAlgorithm

Arithmetic

properties

fo

eht

division

Dynamical
analysis
ofaEuclidean
Algorithm
.

mhtiroglAna
mhtiroglAnaedilcuEehtfosisylanacitsilibaborP⇓noitcnufgnitarenegehtfoseitreporplacitylanA⇓transferoperator

Analytical
propertiesofthe
Quasi-Inverse
ofthe

Spectral
propertiesofthe
transferoperator

Geometric
propertiesofthe
branches

AEuclideanAlgorithm

Arithmetic
propertiesofthe
division

Dynamical
analysis
ofaEuclidean
Algorithm
.

Dynamical
analysis
ofaEuclidean
Algorithm
.

AEuclideanAlgorithm

Arithmetic
propertiesofthe
division

Geometric
propertiesofthe
branches

Spectral
propertiesofthe
transferoperator

Analytical
propertiesofthe
Quasi-Inverse
ofthe

transferoperator

Analytical
propertiesofthe
generatingfunction

Probabilisticanalysis
oftheEuclidean
Algorithm

input
(
u,v
)
,itcomputesthe
gcd
of
u
and
v
,

ehtnO

together

htiw

eht

deunitnoC

rFnoitca

noisnapxE

fo

.v/u

ehT

(standard)EuclidAlgorithm:thegrandfatherofallthealgorithms.

,pm1+...1+2m1+1m1=vu:vufoEFC.htpedehtsip.stigidehteras’imeht,vdnaufodcgehtsipu0=1+pu0+pupm=1−pu1−pu<pu<0pu+1−pu1−pm=2−pu+...=...2u<3u<03u+2u2m=1u1u<2u<02u+1u1m=0u1u≥0u;u=:1u;v=:0u
The(standard)EuclidAlgorithm:thegrandfatherofallthealgorithms.

Ontheinput
(
u,v
)
,itcomputesthe
gcd
of
u
and
v
,

togetherwiththe
ContinuedFractionExpansion
of
u/v

.v/ufonoisnapxEnoitcarFdeunitnoC

u=:u;v=:uu;100

u
0
=
m
1
u
1
+
u
2


u
1
=
m
2
u
2
+
u
3
...
=
...
+

u
p

2
=
m
p

1
u
p

1
+
u
p
u
p

1
=
m
p
u
p
+0

u
p
isthe

≥u1

0
<u
2
<u
1
0
<u
3
<u
2

0
<u
p
<u
p

1

u
p
+1
=0

.stigidehteras’meht,vdnaufodcg.htpedehtsipi

FCEfouv:uv=m1+m21+.1..1+1mp,
The(standard)EuclidAlgorithm:thegrandfatherofallthealgorithms.

Ontheinput
(
u,v
)
,itcomputesthe
gcd
of
u
and
v
,

togetherwiththe
ContinuedFractionExpansion
of
u/v

unitnoC.v/ufonoisnapxEnoitcarFde

u
0
:=
v
;
u
1
:=
u
;
u
0

u
1

u
0
=
m
1
u
1
+
u
2


u
1
=
m
2
u
2
+
u
3
...
=
...
+

u
p

2
=
m
p

1
u
p

1
+
u
p
u
p

1
=
m
p
u
p
+0

0
<u
2
<u
1
0
<u
3
<u
2

0
<u
p
<u
p

1

u
p
+1
=0

u
p
isthe
gcd
of
u
and
v
,the
m
i
’sarethe
digits
.
p
isthe
depth
.

uCFEof:
v

1u,=1v+m11+m21...+mp

.mhtiroglaehtfonoisnetxesuounitnocasimetsyslacimanydehT.0sehcaertahtyrotcejarta=)T,]1,0[(metsySlacimanyDehtfoyrotcejartlanoitarA=)0,...,)x(2T,)x(T,x(mhtiroglAnaedilcuEehtfonoitucexenA0=)0(T,0=6xrofx1−x1=:)x(T,]1,0[→−]1,0[:Terehw,)ix(T=1+ixroix1−ix1=1+ixsanettirwnehtsi1+iu+iuim=1−iunoisividehT.1−iuiu=:ixlanoitarehtyb)1−iu,iu(riapregetniehtecalpeRTheunderlyingEuclideandynamicalsystem(I).

(
u
1
,u
0
)
is:

ThetraceoftheexecutionoftheEuclidAlgorithmon

(
u
1
,u
0
)

(
u
2
,u
1
)

(
u
3
,u
2
)

...

(
u
p

1
,u
p
)

(
u
p
+1
,u
p
)=

(0
,u
p
)

.mhtiroglaehtfonoisnetxesuounitnocasimetsyslacimanydehT.0sehcaertahtyrotcejarta=)T,]1,0[(metsySlacimanyDehtfoyrotcejartlanoitarA=)0,...,)TheunderlyingEuclideandynamicalsystem(I).

xfor
x
6
=0
,T
(0)=0

(11T
:[0
,
1]
−→
[0
,
1]
,T
(
x
):=
x

x

211x
i
+1
=
x

x
or
x
i
+1
=
T
(
x
i
)
,
where
ii

TThedivision
u
i

1
=
m
i
u
i
+
u
i
+1
isthenwrittenas

,uReplacetheintegerpair
(
u
i
,u
i

1
)
bytherational
x
i
:=
i
.
u1−i

)ThetraceoftheexecutionoftheEuclidAlgorithmon
(
u
1
,u
0
)
is:

x(
u
1
,u
0
)

(
u
2
,u
1
)

(
u
3
,u
2
)

...

(
u
p

1
,u
p
)

(
u
p
+1
,u
p
)=(0
,u
p
)

(T,x(mhtiroglAnaedilcuEehtfonoitucexenA

Voir icon more
Alternate Text