Convex Structure Learning in Log Linear Models: Beyond Pairwise Potentials

icon

140

pages

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

140

pages

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials Mark Schmidt and Kevin Murphy Department of Computer Science University of British Columbia May 15, 2010

  • beyond pairwise

  • introduction higher-order

  • gaussian graphical

  • parameters wi

  • structure learning


Voir icon arrow

Publié par

Poids de l'ouvrage

3 Mo

Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials
Mark Schmidt and Kevin Murphy
Department of Computer Science University of British Columbia
May 15, 2010
Outline
1
2
3
4
5
Introduction Higher-Order Log-Linear Models Optimization Experiments Conclusion
Introduction Structure Learning Our Contribution
Higher-Order
Optimization
Experiments
Conclusion
with
Log-Linear
Structure Learning with`1-Regularization Our Contribution
`1-Regularization
Models
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
Structure Learning with`1-Regularization Our Contribution
Introduction Higher-Order Log-Linear Models Optimization Experiments Conclusion Structure Learning with`1noazit-lariRegu
Several authors have recently examined parameter estimation in graphical models with`1-regularization. Regularization and structure learning in a convex framework. First works looked at Gaussian graphical models. Recent works considerlog-linear modelsof discrete data.
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
Introduction Higher-Order Log-Linear ModelsStructure Learning with`1-Regularization ribution OEpxtpiemriizmaetinotsnOur Cont Conclusion Structure Learning with`1-onzatilariRegu
For example, assume we have apairwiseundirected graphical model, p(x),Z1Yφi(xi)Yφij(xi,xj), i j>i with node parameterswiand edge parameterswij.
Assume thatwij=0is equivalent to removing the edge (i,j).
We can usegroup`1-regularizationfor simultaneous parameter estimation and structure learning:
n mwinXlogp(xi|w) +λX X||wij||2, i=1i j>i
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
Introduction Higher-Order Log-Linear Models`1-Regularization OEptpiemriizmateinotnsSOturrucCtounrteriLbeuatrinoinng with x Conclusion Structure Learning with`1guRerila-noazit
For example, assume we have apairwiseundirected graphical model, p(x),Z1Yφi(xi)Yφij(xi,xj), i j>i with node parameterswiand edge parameterswij.
Assume thatwij=0is equivalent to removing the edge (i,j).
We can usegroup`1-regularizationfor simultaneous parameter estimation and structure learning:
n mwinXlogp(xi|w) +λX X||wij||2, i=1i j>i
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
Introduction Higher-Order Log-Linear Models OpxtpiemriizmateinotsnSOturrucCtuornteriLbeuatrinoinng with`1-Regularization E Conclusion Structure Learning with`1nioatizaruleg-R
For example, assume we have apairwiseundirected graphical model, p(x),Z1Yφi(xi)Yφij(xi,xj), i j>i with node parameterswiand edge parameterswij.
Assume thatwij=0is equivalent to removing the edge (i,j).
We can usegroup`1-regularizationfor simultaneous parameter estimation and structure learning:
n mwinXlogp(xi|w) +λX X||wij||2, i=1i j>i
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
`1-Regularization
Introduction Higher-OrderLog-LiOnepatirmMizoatdieolnsStructure Learning with Our Contribution Experiments Conclusion Structure Learning with`1-eRugaliraziton
A list of papers on this topic (incomplete):
[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et al.,2006],[Leeetal.,2006],[Meinshausen&Bu¨hlmann,2006], [Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007], [Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al., 2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008], [Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],
[Schmidtetal.,2008],[Fan&Feng,2009],[H¨oling&Tibshirani,2009], [Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt & Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al., 2010].
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
`1-Regularization
Introduction Higher-Order Log-Linear Models OptimizationSOturrucCtuornteriLbeuatrinoinng with Experiments Conclusion Structure Learning with`1oinularizat-Reg
Many of these papers have made thepairwiseassumption:
[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et al.,2006],[Leeetal.,2006],[Meinshausen&B¨uhlmann,2006], [Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007], [Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al., 2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008], [Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],
[Schmidtetal.,2008],[Fan&Feng,2009],[H¨oling&Tibshirani,2009], [Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt & Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al., 2010].
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
`1-Regularization
Introduction Higher-OrderLog-LinearModeolnsg with Structure Learnin OEpxtpiemriizmaetintsOur Contribution Conclusion Structure Learning with`1on-ugeRiralitaz
Many of these papers have made thepairwiseassumption:
[Li & Yang, 2004],[Li & Yang, 2005], [Banerjee et al., 2006], [Huang et al.,2006],[Leeetal.,2006],[Meinshausen&B¨uhlmann,2006], [Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007], [Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al., 2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008], [Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],
[Schmidtetal.,2008],[Fan&Feng,2009],[H¨oling&Tibshirani,2009], [Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt & Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al., 2010].
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
`1-Regularization
Introduction Higher-Order Log-Linear Models OptimizationSOturrucCtuornetriLbeuatrinoinng with Experiments Conclusion Structure Learning with`1tazinoigeR-ralu
Many of these papers have made thepairwiseassumption:
[Li & Yang, 2004],[Li & Yang, 2005], [Banerjee et al., 2006], [Huang et al., 2006],[Lee et al., 2006][,nieMuahs&neslmanB¨uh06],n,20 [Wainwright et al., 2006]et al., 2007], [Schmidt et al., 2007],, [Dahinden [Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al., 2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008], [Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],
[Schmidtetal.,2008],[Fan&Feng,2009],[H¨oling&Tibshirani,2009], [Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt & Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al., 2010].
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
Voir icon more
Alternate Text