151
pages
Documents
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
151
pages
Documents
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
Publié par
Poids de l'ouvrage
1 Mo
Celestial Computing
with MATLAB
Zero Relative Velocity Curves for Mass Ratio = 0.2
2
1.5
1
0.5
0
−0.5
−1
−1.5
−2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
x coordinate
Copyright © 1998-2009 by Science Software. All rights reserved.
y coordinateCelestial Computing with MATLAB
INTRODUCTION ....................................................................................................... 7
1. RISE AND SET OF THE SUN, MOON AND PLANETS........................................ 9
2. LUNAR ECLIPSES.............................................................................................. 17
3. LUNAR OCCULTATIONS................................................................................... 20
4. SOLAR ECLIPSES 23
5. TRANSITS OF MERCURY AND VENUS............................................................ 25
6. CLOSEST APPROACH BETWEEN THE EARTH AND HELIOCENTRIC
OBJECTS................................................................................................................ 28
7. EQUINOXES AND SOLSTICES.......................................................................... 31
8. COWELL’S METHOD FOR HELIOCENTRIC ORBITS....................................... 32
cowell1.m – rectangular position and velocity vector formulation ................................................................32
cowell2.m – modified equinoctial orbital elements formulation.....................................................................34
9. ENCKE’S METHOD FOR HELIOCENTRIC ORBITS.......................................... 39
10. THE CIRCULAR-RESTRICTED THREE-BODY PROBLEM............................. 43
crtbp1.m – coordinates and energy of the libration points .............................................................................44
g3body.m – graphics display of three-body motion.........................................................................................46
zvcurve1.m – graphics display of zero velocity curves through equilibrium points.....................................49
zvcurve2.m – graphics display of user-defined zero relative velocity curves ................................................51
11. APPARENT COORDINATES OF A PLANET OR THE MOON ........................ 55
12. APPARENT COORDINATES OF A STAR........................................................ 59
13. JPL DE405 LUNAR, SOLAR AND PLANETARY EPHEMERIS....................... 62
14. SLP96 LUNAR, SOLAR AND PLANETARY EPHEMERIS .............................. 65
Page 1 Celestial Computing with MATLAB
15. OTHER LUNAR, SOLAR AND PLANETARY EPHEMERIS ALGORITHMS.... 69
sun.m – solar ephemeris.....................................................................................................................................69
moon.m – lunar ephemeris ................................................................................................................................70
mercury.m – Mercury ephemeris......................................................................................................................70
venus.m – Venus ephemeris...............................................................................................................................71
earth.m – Earth ephemeris..........................71
mars.m – Mars ephemeris.........................71
jupiter.m – Jupiter ephemeris ..................................................................................................72
saturn.m – Saturn ephemeris ............................................................................................................................72
uranus.m – Uranus ephemeris.......................72
neptune.m – Neptune ephemeris.....................73
pluto.m – Pluto ephemeris .................................................................................................................................73
sun1.m – precision Sun ephemeris ....................................................................................................................74
elp2000.m – osculating orbital elements of the moon ......................................................................................76
planet1.m – mean ecliptic and equinox of data planetary ephemeredes........................................................78
planet2.m – mean ecliptic and equinox of J2000 planetary ephemerides......................................................79
seleno.m – selenographic coordinate transformation......................................................................................80
16. APPARENT GREENWICH SIDEREAL TIME ................................................... 81
gast.m – low precision ........................................................................................................................................81
gast1.m – full precision.......................................................................................................................................82
gast2.m – DE405 nutations ................................................................................................................................83
17. IAU 1980 NUTATION IN LONGITUDE AND OBLIQUITY ................................ 85
18. PRECESSION TRANSFORMATION ................................................................ 87
19. KEPLER’S EQUATION ..................................................................................... 89
kepler1.m – Danby’s method.............................................................................................................................89
kepler2.m – Danby’s method with Mikkola’s initial guess .............................................................................91
Page 2 Celestial Computing with MATLAB
kepler3.m – Gooding’s two iteration method...................................................................................................92
kepler4.m – parabolic and near-parabolic orbits ............................................................................................93
20. TWO-BODY ORBITAL MOTION....................................................................... 96
twobody1.m – Goodyear’s method....................................................................................................................96
twobody2.m – Sheppard’s method98
twobody3.m – Stumpff/Danby method.............................................................................................................98
21. TIME AND DATE FUNCTIONS....................................................................... 101
julian.m – calendar date to Julian date ..........................................................................................................101
gdate.m – julian date to calendar date............................................................................................................101
jd2str.m – julian date to calendar date and universal time strings..............................................................101
utc2tdt.m – convert UTC Julian date to TDT Julian date ............................................................................102
tdt2tdb.m – convert TDT Julian date to TDB Julian date...102
hrs2hms.m – convert hours function ..............................................................................................................103
22. NUMERICAL METHODS AND UTILITY ROUTINES...................................... 104
TRIGONOMETRY AND VECTOR ROUTINES.........................................................................................104
atan3.m – four quadrant inverse tangent.......................................................................................................104
modulo.m – modulo 2 pi...................................................................................................................................104
uvector.m – unit vector ....................................................................................................................................104
DIFFERENTIAL EQUATIONS............105
rkf45.m – Runge-Kutta-Fehlberg 4(5) method for first-order systems .......................................................105
rkf78.m – Runge-Kutta-Fehlberg 7(8) method for first-order systems105
nym4.m – Nystrom fourth-order method for second-order systems............................................................107
ceqm1.m – first-order heliocentric equations of orbital motion...................................................................108
meeeqm.m – modified equinoctial equations of motion ................................................................................109
ROOT-FINDING AND OPTIMIZATION ....................................................................................................110
broot.m – bracket a single root of a nonlinear function................................................................................110
brent.m – solve for a single root of a nonlinear function ..............................................................................111
Page 3 Celestial Computing with MATLAB
minima.m – one-dimensional minimization ...................................................................................................112
oevent1.m – find minimization/root finding orbital event ............................................................................112
A