Chris Lacor Dept Mechanical Engineering

icon

33

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

33

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Chris Lacor Dept. Mechanical Engineering Vrije Universiteit Brussel With thanks to: Dr. S. Smirnov, Ir. Ch. Vandenhaute, Ir. M. Raes, Ir. G. Onorato Intrusive Polynomial Chaos for the Compressible Navier-Stokes Equations

  • input uncertainties

  • polynomials

  • compressible navier-stokes

  • uncertain input parameters

  • pc decomposition

  • basis functions

  • gramm-schmidt procedure

  • ??? ?

  • intrusive approach


Voir icon arrow

Publié par

Nombre de lectures

16

Langue

English

Poids de l'ouvrage

1 Mo

Intrusive Polynomial Chaos for the
Compressible Navier+Stokes
Equations

Chris Lacor
Dept. Mechanical Engineering
Vrije Universiteit Brussel

With thanks to: Dr. S. Smirnov, Ir. Ch. Vandenhaute, Ir. M.
Raes, Ir. G. Onorato

Polynomial Chaos

Framework

NODESIM European STREP project 1/11/06+1/03/10

WP3.3: Polynomial Chaos Methods

– TUD:non+intrusive approach

– VUB:intrusive approach

Symposium on Accuracy and Uncertainty in Flow Simulations, ONERA, Chatillon, December 3, 2010

Polynomial Chaos

PC method relies on a probabilistic
framework.
Uncertain input parameters are modelled
as stochastic variables (or fields) with
known distributions (PDF).
For each stochastic variable a new
dimension ξ is introduced
Solution is sought in a form of PC
decomposition.
A set of orthogonal multidimensional
polynomials ψ is used as basis functions.
The polynomial type depends on the PDF
of the uncertainty, see further
The deterministic coefficients are derived
by Galerkin projection of the governing
equations.
The resulting set of equations is coupled
due to non+linear terms in the Navier+
Stokes equations.

r1r(x,t,x(q!,...,x(q!!
1n
u1u(x,t,x(q!,...,x(q!!
1n
p1p(x,t,x(q!,...,x(q!!
1n

N
∑k k1n
r(x,t,q!1r(x,t!Y(x,...,x!
k10
N
∑k k1n
u(x,t,q!1u(x,t!Y(x,...,x!
k10
N
∑k k1n
p(x,t,q!1p(x,t!Y(x,...,x!
k10

Symposium on Accuracy and Uncertainty in Flow Simulations, ONERA, Chatillon, December 3, 2010

Voir icon more
Alternate Text