ANALYSIS of EUCLIDEAN ALGORITHMS

icon

125

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

125

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

ANALYSIS of EUCLIDEAN ALGORITHMS An Arithmetical Instance of Dynamical Analysis Dynamical Analysis := Analysis of Algorithms + Dynamical Systems Brigitte Vallee (CNRS and Universite de Caen, France) Results obtained with : Ali Akhavi, Viviane Baladi, Jeremie Bourdon, Eda Cesaratto, Julien Clement, Benoıt Daireaux, Philippe Flajolet, Loıck Lhote, Veronique Maume.

  • dynamical systems

  • v– dynamical

  • euclid algorithm

  • up?1 up?1

  • benoıt daireaux

  • iv– euclidean algorithms

  • algorithms

  • u1 u1

  • results obtained

  • euclidean algorithms


Voir icon arrow

Publié par

Nombre de lectures

82

Langue

English

ANALYSISofEUCLIDEANALGORITHMS

AnArithmeticalInstanceofDynamicalAnalysis

DynamicalAnalysis:=

AnalysisofAlgorithms+DynamicalSystems

Brigitte
Valle´e
(CNRSandUniversite´deCaen,France)

Resultsobtainedwith:

Ali
Akhavi
,Viviane
Baladi
,Je´re´mie
Bourdon
,

Eda
Cesaratto
,Julien
Cle´ment
,Benoıˆt
Daireaux
,

Philippe
Flajolet
,Loı¨ck
Lhote
,Ve´ronique
Maume
.

PlanoftheTalk

I–TheEuclidAlgorithm,andtheunderlyingdynamicalsystem

II–TheotherEuclideanAlgorithms

III–Probabilistic–anddynamical–analysisofalgorithms

IV–Euclideanalgorithms:theunderlyingdynamicalsystems

V–DynamicalanalysisofEuclideanalgorithms

PlanoftheTalk

I–TheEuclidAlgorithm,andtheunderlyingdynamicalsystem

II–TheotherEuclideanAlgorithms

III–Probabilistic–anddynamical–analysisofalgorithms

IV–Euclideanalgorithms:theunderlyingdynamicalsystems

V–DynamicalanalysisofEuclideanalgorithms

input
(
u,v
)
,itcomputesthe
gcd
of
u
and
v
,

ehtnO

together

htiw

eht

deunitnoC

rFnoitca

xEnoisnap

fo

.v/u

ehT

(standard)EuclidAlgorithm:thegrandfatherofallthealgorithms.

,pm1+...1+2m1+1m1=vu:vufoEFC.htpedehtsip.stigidehteras’imeht,vdnaufodcgehtsipu0=1+pu0+pupm=1−pu1−pu<pu<0pu+1−pu1−pm=2−pu+...=...2u<3u<03u+2u2m=1u1u<2u<02u+1u1m=0u1u≥0u;u=:1u;v=:0u
The(standard)EuclidAlgorithm:thegrandfatherofallthealgorithms.

Ontheinput
(
u,v
)
,itcomputesthe
gcd
of
u
and
v
,

togetherwiththe
ContinuedFractionExpansion
of
u/v

.v/ufonoisnapxEnoitcarFdeunitnoC

u;u=:u;v=:u010

u
0
=
m
1
u
1
+
u
2


u
1
=
m
2
u
2
+
u
3
...
=
...
+

u
p

2
=
m
p

1
u
p

1
+
u
p
u
p

1
=
m
p
u
p
+0

u
p
isthe

≥u1

0
<u
2
<u
1
0
<u
3
<u
2

0
<u
p
<u
p

1

u
p
+1
=0

.htpedehtsip.stigidehteras’meht,vdnaufodcgi

FCEfouv:uv=m1+m21+.1..1+1mp,
The(standard)EuclidAlgorithm:thegrandfatherofallthealgorithms.

Ontheinput
(
u,v
)
,itcomputesthe
gcd
of
u
and
v
,

togetherwiththe
ContinuedFractionExpansion
of
u/v

C.v/ufonoisnapxEnoitcarFdeunitno

u
0
:=
v
;
u
1
:=
u
;
u
0

u
1

u
0
=
m
1
u
1
+
u
2


u
1
=
m
2
u
2
+
u
3
...
=
...
+

u
p

2
=
m
p

1
u
p

1
+
u
p
u
p

1
=
m
p
u
p
+0

0
<u
2
<u
1
0
<u
3
<u
2

0
<u
p
<u
p

1

u
p
+1
=0

u
p
isthe
gcd
of
u
and
v
,the
m
i
’sarethe
digits
.
p
isthe
depth
.

uCFEof:
v

1u=,1v+m11+m2.1..+mp

0[(metsySlacimanyDehtfoyrotcejartlanoitarA=)0,...,)x(2T,)x(T,x(mhtiroglAnaedilcuEehtfonoitucexenA0=)0(T,0=6xrofx1−x1=:)x(T,]1,0[→−]1,0[:Terehw,)ix(T=1+ixroix1−ix1=1+ixsanettirwnehtsi1+iu+iuim=1−iunoisividTheunderlyingEuclideandynamicalsystem(I).

e(
u
1
,u
0
)
is:

hThetraceoftheexecutionoftheEuclidAlgorithmon

T(
u
1
,u
0
)

(
u
2
,u
1
)

(
u
3
,u
2
)

...

(
u
p

1
,u
p
)

.(
u
p
+1
,u
p
)=

1(0
,u
p
)

−iuiu=:ixlanoitarehtyb)1−iu,iu(riapregetniehtecalpeR.mhtiroglaehtfonoisnetxesuounitnocasimetsyslacimanydehT.0sehcaertahtyrotcejarta=)T,]1,
.mhtiroglaehtfonoisneTheunderlyingEuclideandynamicalsystem(I).

tfor
x
6
=0
,T
(0)=0

x11T
:[0
,
1]
−→
[0
,
1]
,T
(
x
):=
x

x

e11x
i
+1
=
x

x
or
x
i
+1
=
T
(
x
i
)
,
where
ii

sThedivision
u
i

1
=
m
i
u
i
+
u
i
+1
isthenwrittenas

uuReplacetheintegerpair
(
u
i
,u
i

1
)
bytherational
x
i
:=
i
.
u1−i

oThetraceoftheexecutionoftheEuclidAlgorithmon
(
u
1
,u
0
)
is:

u(
u
1
,u
0
)

(
u
2
,u
1
)

(
u
3
,u
2
)

...

(
u
p

1
,u
p
)

(
u
p
+1
,u
p
)=(0
,u
p
)

nitnocasimetsyslacimanydehT.0sehcaertahtyrotcejarta=)T,]1,0[(metsySlacimanyDehtfoyrotcejartlanoitarA=)0,...,)x(2T,)x(T,x(mhtiroglAnaedilcuEehtfonoitucexenA
TheunderlyingEuclideandynamicalsystem(I).

ThetraceoftheexecutionoftheEuclidAlgorithmon
(
u
1
,u
0
)
is:

(
u
1
,u
0
)

(
u
2
,u
1
)

(
u
3
,u
2
)

...

(
u
p

1
,u
p
)

(
u
p
+1
,u
p
)=(0
,u
p
)

uReplacetheintegerpair
(
u
i
,u
i

1
)
bytherational
x
i
:=
i
.
u1−i

Thedivision
u
i

1
=
m
i
u
i
+
u
i
+1
isthenwrittenas

11x
i
+1
=
x

x
or
x
i
+1
=
T
(
x
i
)
,
where
ii

11T
:[0
,
1]
−→
[0
,
1]
,T
(
x
):=
x

x
for
x
6
=0
,T
(0)=0

An
execution
oftheEuclideanAlgorithm
(
x,T
(
x
)
,T
2
(
x
)
,...,
0)

=A
rationaltrajectory
oftheDynamicalSystem
([0
,
1]
,T
)

=a
trajectory
thatreaches
0
.

Thedynamicalsystemisacontinuousextensionofthealgorithm.

11T
(
x
):=
x

x

T
[
m
]
:]
m
1+1
,m
1[
−→
]0
,
1[
,

h1T
[
m
]
(
x
):=
x

m

[]m

]:0,[111−→
]
m
+1
,m
[

1h
[
m
]
(
x
):=
m
+
x

Voir icon more
Alternate Text