An Initial and Boundary Value Problem Modeling

icon

28

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

28

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

An Initial and Boundary Value Problem Modeling Fish-like Swimming Jorge San Martín, Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170/3-Correo 3, Santiago, Chile. (). Jean-François Scheid, Takéo Takahashi, Marius Tucsnak Institut Élie Cartan, Faculté des Sciences, BP239, 54506 Vand÷uvre-lès-Nancy, Cedex, France. (, , ). and INRIA Lorraine, Projet CORIDA. Abstract In this paper we consider an initial and boundary value problem modeling the self-propelled motion of solids in a bi-dimensional viscous incompressible fluid. The self-propelling mechanism, consisting in appropriate deformations of the solids, is a simplified model for the propulsion mechanism of fish-like swimmers. The governing equations are composed of the Navier-Stokes equations for the fluid, coupled to New- ton's laws for the solids. Since we consider the case in which the fluid-solid systems fills a bounded domain we have to tackle a free boundary value problem. The main theoretical result in the paper asserts the global existence and uniqueness (up to pos- sible contacts) of strong solutions of this problem.

  • method still works

  • precisely below

  • propelled motions

  • incompressible fluid

  • propulsion mechanism

  • fluid

  • fish-like swimming

  • dimensional viscous incompressible


Voir Alternate Text

Publié par

Nombre de lectures

33

Langue

English

Poids de l'ouvrage

1 Mo

and
INRIA Lorraine, Projet CORIDA.
forMohanismdelingforFish-likeciencyesevSwimminginJored.gethisSanofMarist?nw,yDepartamenandtoestimateddeelIngenier?aeMatem?tica,methoUnivseversidadthedehasChile,thisCasillash-lik170/3-zoCborreanoha3,papSanistiago,eChile.t(kjorgen@system.dim.tuchile.cldisplace).itJean-Fran?oisInScheidhanism,bTuak?oTheTBorelliakahashiin,bMariuspapTucsnakgisInstituty?liethatCartan,isFitsacult?parametersdeseenSciences,conBP239,[16],54506eciencyVlargeand?uvre-l?s-Nancyen,aterCedex,yFbrancoe.that(eJean-Francmethoois.Scheid@iecn.u-nuid-soliancy.fr,iTakeo.Takaallohashisim@simiecn.u-nancy.ftr,swimmersMarius.Tuctestedsnakexamples.@ductioniecn.u-nancy.frcomotion).aquaticProblempaluewhicVtriBoundaryresearcandlongInitialtreatiseAnjectandwhiclaterrst1936),ofMucAbstract1932IndetailedthiskinematicspapswimmingerpwserieseofconsiderlanJamesinitialInanditbshooundaryswimmingvthealueoproblemdeformationmoodelingofthethisself-propeelledemotiontheofvsolidsGrainwathebi-dimensionalaviscousucincompressiblethanuconipropd.forTheehicles.self-proptellingbroughmecinhanism,yconsistingwinrappropriateisdeformationswofgivtheasolids,umericalisdathesimplieddmoThdelsfordthewspheropulsiulationonthemecultaneoushanismmenofofsh-likeraleandswimmers.isTheongoeralv1erningtroequationsUnderstandingarelocommecpofosedanimalsofatheroNalemvier-Stokhesinequationsgforedthehersuid,acoupledtime.torstNew-onton'ssublaisws[1]forhtheassolids.publishedSinc1680e1681.whe(fromconsidertotheacstudyastheeofinewhichasheentheerformeduid-solidasystemsofllsersathebooundedodomaintwGrae.haGrav[17]ehasteenowntactheklemecaoffreeeelbbasedoundarynvundulatoryalueofproblem.bThedymainsometheoreticaltheresultofindeformationthevpapberdassertstermintheInglobalstillexistencetroandersialuniquenesser(upytoitpasos-thatsibleswimmingconoftdolphinamcts)hofrsthetrongofsolutionsvoftionalthisellproblem.rsTheunderwsecondvno1vaMorewmathematicallyoneorienthetedascienStarotistsandbopecameisinisvaddressedolvtheedforinparticularunderstandingbshaluemotionincompressibleafterThe1950of(seeofTeaaylor[18]).[32i]offornantheearlyofwgorkuniquenessinethissh-likdirection).ation,FsurthersometimesprogressosedonthethedeformationmathematicaleralmothedelihangThisofcaseshnswiFmtheminself-pg[15hlaelasticvChamenbexplainedeenwrepbutortedofincontheofbeopropoksthisofandLighsimpliedthillmo[24],anChildressimmersed[6]remainingandundulatinginesevberalthearticlesrigid(see,Theforfrominstance,theWen.us[35],tacSparenuid-bbyergwns.[30]tacandvaluereferencesbtherein).papMoreorecen(see,tlyEsteban,andresearcGunzburger,hersmenhaaevmotionseinbtlyeenmathematicalinofteresteduidtobbShkuild,s,studyDesjardins,andTconittrolelobiomimeticwunderwnotawteroseveehiclesproacwhic(uphobtainedmothevmethoeelopbisystabilitcseemshangesproblem.ofershapaneoundaryandfornotdelbswimming.yconsistsdirectupropulsion,dsuchhaasInwithofproperellers.oThetheweorkustindythistdirectionishastobaneen(undulatory)initiatedpartintTinryuidanwhereastafyllouisandourTpryconsideraandnthetafylloub[34]dyandlleddevuideloptheedwineanaimpbortanoblemtynrecenumsevbforerrigidofimmersedpapincompressibleersinwhDesjardinsicSanhoitotacucsnakk[13]landeusdthatboothsystemtheoreticalspandexistenceexpperimenbtalvissues[14](see,.forsevinstance,addressedKellynandsMurrainyviscous[21],ithKanso,viscoMars-dyden,CoutandRo[7],wleyolle,andandMelli-HubterGran[20]andand[11references[3]).therein).bInpreciselyallonetheofpapisersdmenantionedeabtheoevnonrigide,deformation.theanuidaisconsistsuppcosedptoofbtroeandinossibilitviscidnandinspinthoseirrotationalinocase.w.existence,Thandisyassumptionerties)impliesanthat,enproInvidpapewdconsiderthatinitialwbevhaproblemvaemosolvofedeanThisellipticdelbinoundarysolidvndergoingalueundulatoryproblem,eformthewhicmoisdelinreducesviscoustouid.thetheordinarypartdthiierepapnthetialbequationsdycomingcalledfromcrNewton'saturlaorws.jIfthewoe.dodisplacemennotofncreatureegdecomplinecatpartthedviscositdeformationypart.eects,rigidtheofredisplacemenlresultsevtheanteractiontthemoanddelsolid,consiststheinpartthegivnSinceonaimstationarytoNaovier-Stoksiblyesseveqcreaturesutoationsklefcaseoaroundedtheouidsystem,whicdomainhbarethecoupledistoofNewton'sunknolaThereforewseforvthetosh-likkleefrswimmingeoboundaryjpre.ct.dicultAshasfareenastlywineeralknoersw,theonlyoffewbpapdiesersinhaviscousvuidefortacstakledce,theandproblem[12],fromMart?n,thisvpverspTectiv[29],eeireisl(seeorCarlingLee[4],SereginLiuLetandalsoKationwinaccasehif[26uid-rigid]lling).wholeTheseacpaptheersofassumerothelledathastheeenuid-bnoestigateddyGaldisandy]stemsRecenlls,theeralwholeorksspacetheandatheyainytroisducethecomputationalteractionuidadynamicsincompressiblemethowdsantoorinelasticvoestigate(see,theinstanceloandcomotionollero[8],fbsh-likDesjardineEstebanobGrajectsdmonin[5],aEsteban,viscousdmoincompressibletuid.LeTheallecn]umericalBoulakiamethoAsdswillinetromoreducedbinw,theofabparticularitiesoourvorkethatmenetionedopapuseersydoconstitutivnlaotforseemsolidadaptedwtoimpthethesimpartultaneousthesimThulationadvoftagesthethismotionpofhsevineralglobalimmeharacterrstoedossibleobtacts)jects.theOnsthenothersolutionshand,inthepmathematicalyanalysisusingofumericalthedsassoiredciatedysystemdevofedPDE'sth(thrigid-uida2tS0
1S C0
X S0
2
X :S [0;1)!R ;0
R X(y;t) =X (X (y;t);t) 8y2S ; t> 0;0
R X X
RX
X
X
X
S0
1t > 0 y7! X (y;t) C S0
S (t) S (t) =X (S ;t) y2S t7!X (y;t)0 0
1 C X (y; 0) =y
oconsmotributionsmobroughetNainthebbyassumptionsthspisclasswwhicorkakconsiofstsvinofgivingassumptionsarstwtoeakprobformtheula-cantionsome(ofappropriatemixeddisplacementofypariablese)equationsandbaneapproologicalximationSectionscehememassfordtheagoNewton'svverningbequations.mainThisofsctohemevingisOurnallyytestednononbinsomeinundulatorytromtingotionthestheobservanedthebwhereasyetheandzowhicologiststhisincorderationstoegetusstraaiagthehbasedt-line-swimmingFortheturning.olevMoreofromvwer,forwyeetakmappingeinitiasdosevsevanistagemappingofetheexistencefactforthatsatisesourpriorimethoanddelostillpartwoforkstoif[31]wwhereeahaandvanemapping,sevundulatoryeralcreature.immersedgbwomotiondies,binwnorderdeterminedtovsimeloulateundulatorythewillsimosedultane-knooussatisfyswimmingas-ofwilltenwAnomotionsh-likfromebcreatures.satisfyingThislpapener.iseorganizedtheas.follohows.ofIinatesninSectionter2.wiseevdescribOureces.theypmoindel.ell-pSectionis3theis,devuidotedestoththe.statemenfortobtainedof,thearymainltheoreticalisresult.sertsTheresultlosuppcalthatexistencemotionofofstrongcasesolutionsaisothprothevextendededbinresultSectionthe4.proThedprohofmethoofestimates.thaetoglobaleldexistencecitandvuniquenessofresultrigidisthegivliftingenaninedScomeahashicti(2.1)oTnis5.rigidIntSectionduced6iswappropriateeothderivrepresenetheadeformationwtheeakInformremaininofpartthethisgoorkvrigiderninginequationswillandewunknoetodescribeefromagosemi-discretizationerningwithbrespw,ectthetomotiontheoftimebvsuppariable.toFinallye,wnintoSectionsev7ralwsumptionsehdescribbegivainclasssection.ofexamplepundulatoryossiblehangedeformationscomingofzotheoswimmersservandandwourewilillustratebthemgivbiny7nLetumericalgivsimtheTheonsecondundulatorymotion3onoWncs.ose2systemThecogordvwitherningoriginequationsthe2.1cenAofkinematicismoOurdelassumptionof(H1)sh-likoreeryswimmingmethoDenote,bmappingyaies.edttheSobdomainisoosedccupieddieomorphismbwyonthcreatureeforcreaturelainwhereatoreferencetheconguration.equationsWvier-StokeeassumecouplingthatboMoreober,isevanryoplemenalueconnectedthesetvwithoundimmersedanderalabtheoundaryof.thatMoreoandvaer,theoreticalwOureul.ati t> 0 Y X
X (Y (x ;t);t) =x ; Y (X (y;t);t) =y
x 2S (t) t> 0 y2S0
X
Z Z
dx = dy 8t> 0:
S (t) S0
w S (t)

@X w (x ;t) = (y;t) 8x 2S (t); t> 0:@t y=Y (x ;t)
S (t)0 0
S (t)
Z Z
(x ;t) dx = (y) dy 8t> 0;0
S (t) S0
(Y (x ;t))0 (x ;t) = 8t> 0; 8x 2S (t):
det (rX )(Y (x ;t))
S0
Z
(x ;t)w (x ;t) dx = 0 t> 0
S (t)
Z
x1 ? (x ;t) x w (x ;t) dx = 0 t> 0 x =
x 2S (t)
x2? ?x x =
x1
Z Z
(y;t)X (y;t) dy = (x ;t)x dx = 0 8t> 0:0
S S (t)0
Foi.e.,uallghbtheestotalwvpolumeinoftothethecreaturevisvpreservandedof(btyeassumptioneld(H2)),wingthedycreaturepis,,inofgeneral,ycompressible.creatureMoreoRemarkvinercensincedyourmotion,aimwieldsLettoasstudysuppself-prtheop(H2)elilebdappliedmotionsconserv,TheitforiofsynaturaldenotetotheassumeethatpreservtheandundulatoryAssumptionsmotionimplydothatesofnotofebthat,notthethelinearthand(2.3)alththereferenceangularthemomendensittabofevthecreature,creature.vBy,usingosedthesatisfyfactfollothatassumption.theTheoriginvofgourosystemwholeoftocorincipleordinatesationcoincidesforwithmassthe.masswhere,centotalterolumeofthedenoteeldyields,,ethesebassumptionsdensitcanthebectorebwrittenisased,(H3)letmass.of2.1.ation(H1)conserv(H3)the,ofparticular,formthecalositionlothetheterwhereasmass(2.5)theboyistheaectedinyvundulatoryersei.e.dea,:i.e.(2.6)theDenotedieomorphismcongurationsatisfyingthe(2.2)solidforofevyfortheallbNoticey(2.4)eryundulatoryoreloyerythe,vandcit,of(H4)written.aTheectordeformationonisi.e.,alsomo4dify2 2RX :R [0;1)!R
R X (x ;t) =R x +(t);(t)
2 : [0;1)!R
t> 0 (t) R

t
S((t);(t);t) =R S (t) +(t) 8t> 0:(t)
2X :S [0;1)!R0
2(;;X ) : [0;1)!R
: [0;1)!R X
X(y;t) =R X (y;t) +(t);(t)
S0 0
Z
M(t) = (y)X(y;t)dy 8t2 [0;1);0
S0
X (0)
X
t
2 ?L (S ) R X (y;t)0 0 (t)
Z Z
@X0 2 0 ? (t) (y)jX(y;t) (t)j dy = (y) (t) (X(y;t) (t)) dy:0 0 @tS S0 0
(0) X
t> 0
0 0 ?u (x;t) = (t) + (t)(x (t)) +w(x;t) 8x2S((t);(t);t);S

w(x;t) =R w R (x (t));t 8x2S((t);(t);t):(t) (t)
w
(x;t) = (R (x (t));t) 8t> 0; x2S((t);(t);t)(t)
m
S((t);(t);t)
Z
m = (x;t) dx:
S((t); (t);t)
theuctgivdwith

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text