Algebraic structure of the ring of jet differential operators and hyperbolic

icon

52

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

52

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Algebraic structure of the ring of jet differential operators and hyperbolic varieties Jean-Pierre Demailly Institut Fourier, Universite de Grenoble I, France December 21 / ICCM 2007, Hangzhou Jean-Pierre Demailly (Grenoble I), 21/12/2007 Jet differential operators and hyperbolic varieties / Hangzhou

  • kobayashi metric

  • jet differential

  • holomorphic curves

  • hyperbolic varieties

  • brody has

  • compact riemann

  • kobayashi pseudo-metric


Voir icon arrow

Publié par

Langue

English

Algebraic dierenti
structure of the al operators and varieties
Jean-Pierre
Demailly
ring of jet hyperbolic
InstitutFourier,Universit´edeGrenobleI,France
December 21
Jean-Pierre Demailly (Grenoble I), 21/12/2007
/ ICCM
2007,
Hangzhou
Jet differential operators and hyperbolic varieties / Hangzhou
Kobayashi
metric /
hyperbolic
manifolds
LetXbe a complex manifold,n= dimCX. Xis said to behyperbolic in the sense of Brodyif there are no non-constant entire holomorphic curves f:CX.
Jean-Pierre Demailly (Grenoble I), 21/12/2007
Jet differential operators and hyperbolic varieties / Hangzhou
Kobayashi metric / hyperbolic manifolds
LetXbe a complex manifold,n= dimCX. Xis said to behyperbolic in the sense of Brodyif there are no non-constant entire holomorphic curves f:CX. Brody has shown that forXcompact, hyperbolicity is equivalent to thenon degeneracy of the Kobayashi pseudo-metric:xX,ξTX
kx(ξ) = inf{λ >0 ;f:DX
Jean-Pierre Demailly (Grenoble I), 21/12/2007
f(0) =x λf(0) =ξ}
Jet differential operators and hyperbolic varieties / Hangzhou
Kobayashi metric / hyperbolic manifolds
LetXbe a complex manifold,n= dimCX. Xis said to behyperbolic in the sense of Brodyif there are no non-constant entire holomorphic curves f:CX. Brody has shown that forXcompact, hyperbolicity is equivalent to thenon degeneracy of the Kobayashi pseudo-metric:xX,ξTX
kx(ξ) = inf{λ >0 ;f:DXf(0) =x λf(0) =ξ}
Hyperbolic varieties are especially interesting for their expected diophantine properties : Conjecture(S. Lang)If a projective variety X defined overQis hyperbolic, then X(Q)is finite.
Jean-Pierre Demailly (Grenoble I), 21/12/2007
Jet differential operators and hyperbolic varieties / Hangzhou
Hyperbolicity
Case
n= 1
and
curvature
(compact
Riemann
X=P1 X=C(Z+Zτ)
obviously non hyperbolic :f
Jean-Pierre Demailly (Grenoble I), 21/12/2007
surfaces):
(g= 0(g= 1
:CX.
TX TX
>0) = 0)
Jet differential operators and hyperbolic varieties / Hangzhou
Voir icon more
Alternate Text