Algebraic Geometric Topology paper no Preprint version available at http: www fourier ujf grenoble fr eiserm

icon

26

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

26

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Algebraic & Geometric Topology 5 (2005), paper no. 23, 537-562. Preprint version available at eiserm Yang-Baxter deformations of quandles and racks MICHAEL EISERMANN Given a rack Q and a ring A , one can construct a Yang-Baxter operator cQ : V ? V ? V ? V on the free A-module V = AQ by setting cQ(x? y) = y? xy for all x, y ? Q . In answer to a question initiated by D.N. Yetter and P.J. Freyd, this article classifies formal deformations of cQ in the space of Yang-Baxter operators. For the trivial rack, where xy = x for all x, y , one has, of course, the classical setting of r-matrices and quantum groups. In the general case we introduce and calculate the cohomology theory that classifies infinitesimal deformations of cQ . In many cases this allows us to conclude that cQ is rigid. In the remaining cases, where infinitesimal deformations are possible, we show that higher-order obstructions are the same as in the quantum case. Introduction Following M. Gerstenhaber [16], an algebraic deformation theory should • define the class of objects within which deformation takes place, • identify infinitesimal deformations as elements of a suitable cohomology, • identify the obstructions to integration of an infinitesimal deformation, • give criteria for rigidity, and possibly determine the rigid objects.

  • braid ?i

  • called

  • concise solution

  • quantum group

  • map c˜

  • yang

  • satisfies c˜ ?

  • solution c1

  • operator cq


Voir icon arrow

Publié par

Nombre de lectures

48

Langue

English

Algebraic&GeometricTopology5(2005),paperno.23,537-562.
Preprintversionavailableathttp://www-fourier.ujf-grenoble.fr/

eiserm

Yang-Baxterdeformations
ofquandlesandracks
M
ICHAEL
E
ISERMANN

Givenarack
Q
andaring
A
,onecanconstructaYang-Baxteroperator
c
Q
:
V

V

V

V
onthefree
A
-module
V
=
A
Q
bysetting
c
Q
(
x

y
)
=
y

x
y
forall
x
,
y

Q
.InanswertoaquestioninitiatedbyD.N.YetterandP.J.Freyd,thisarticle
classiesformaldeformationsof
c
Q
inthespaceofYang-Baxteroperators.For
thetrivialrack,where
x
y
=
x
forall
x
,
y
,onehas,ofcourse,theclassicalsetting
ofr-matricesandquantumgroups.Inthegeneralcaseweintroduceandcalculate
thecohomologytheorythatclassiesinnitesimaldeformtaionsof
c
Q
.Inmany
casesthisallowsustoconcludethat
c
Q
isrigid.Intheremainingcases,where
innitesimaldeformationsarepossible,weshowthathigher-orderobstructions
arethesameasinthequantumcase.

Introduction

FollowingM.Gerstenhaber[
16
],analgebraicdeformationtheoryshould

denetheclassofobjectswithinwhichdeformationtakesplace,

identifyinnitesimaldeformationsaselementsofasuitablecohomology,

identifytheobstructionstointegrationofaninnitesimaldeformation,

givecriteriaforrigidity,andpossiblydeterminetherigidobjects.
InanswertoaquestioninitiatedbyP.J.FreydandD.N.Yetter[
15
],wecarryoutthis
programmeforracks(linearizedoversomering
A
)andtheirformaldeformationsin
thespaceof
A
-linearYang-Baxteroperators.

2
MichaelEisermann
Arackisaset
Q
withabinaryoperation,denoted(
x
,
y
)
7→
x
y
,suchthat
c
Q
:
x

y
7→
y

x
y
denesaYang-Baxteroperatoronthefree
A
-module
A
Q
(see
§
1
fordenitions).
Foratrivialrack,where
x
y
=
x
forall
x
,
y

Q
,weseethat
c
Q
issimplythe
transpositionoperator.Inthiscasethetheoryofquantumgroups[
7
,
27
,
22
,
23
]
producesaplethoraofinterestingdeformations,whichhavereceivedmuchattention
overthelast20years.Itthusseemsnaturaltostudydeformationsof
c
Q
inthegeneral
case,where
Q
isanon-trivialrack.

Outlineofresults
Werstintroduceandcalculatethecohomologytheorythatclassiesinnitesimal
deformationsofracksinthespaceofYang-Baxteroperators.Inmanycasesthis
sufcestodeducerigidity.Intheremainingcases,whereinnitesimaldeformations
arepossible,weshowthathigher-orderobstructionsdonotdependon
Q
:theyarethe
sameasintheclassicalcaseofquantuminvariants.(See
§
1.4
foraprecisestatement.)
FormalYang-Baxterdeformationsofracksthushaveanunexpectedlysimpledescrip-
tion:uptoequivalencetheyarejustr-matriceswithaspecialsymmetryimposedby
theinnerautomorphismgroupoftherack.Althoughthisisintuitivelyplausible,it
requiresacarefulanalysistoarriveatanaccurateformulation.Theprecisenotionof
entropic
r-matriceswillbedenedin
§
1.3
.
Withregardstotopologicalapplications,thisresultmaycomeasadisappointment
inthequestfornewknotinvariants.Toourconsolation,weobtainacompleteand
concisesolutiontothedeformationproblemforracks,whichisquitesatisfactoryfrom
analgebraicpointofview.
Throughoutourcalculationsweconsiderthegenericcasewheretheorder
|
Inn(
Q
)
|
of
theinnerautomorphismgroupoftherack
Q
isinvertibleinthegroundring
A
.We
shouldpointout,however,thatcertainknotinvariantsariseonlyinthemodularcase,
where
|
Inn(
Q
)
|
vanishesin
A
;seetheclosingremarksinSection
6
.

Howthispaperisorganized
Inordertostatetheresultsprecisely,andtomakethisarticleself-contained,Section
1
rstrecallsthenotionsofYang-Baxteroperators(
§
1.1
)andracks(
§
1.2
).Wecan
thenintroduceentropicmaps(
§
1.3
)andstateourresults(
§
1.4
).Wealsodiscusssome
examples(
§
1.5
)andputourresultsintoperspectivebybrieyreviewingrelatedwork
(
§
1.6
).

Yang-Baxterdeformationsofquandlesandracks
3
Theproofsaregiveninthenextfoursections:Section
2
introducesYang-Baxtercoho-
mologyandexplainshowitclassiesinnitesimaldeformaitons.Section
3
calculates
thiscohomologyforracks.Section
4
generalizesourclassicationfrominnitesimal
tocompletedeformations.Section
5
examineshigher-orderobstructionsandshows
thattheyarethesameasintheclassicalcaseofquantuminvariants.Section
6
,nally,
discussessomeopenquestions.

1Reviewofbasicnotionsandstatementofresults
1.1Yang-Baxteroperators
Let
A
beacommutativeringwithunit.Inthesequelallmoduleswillbe
A
-modules,
andalltensorproductswillbeformedover
A
.Forevery
A
-module
V
wedenoteby
V

n
the
n
-foldtensorproductof
V
withitself.Theidentitymapof
V
isdenotedby
I:
V

V
,and
I
=
I

Istandsfortheidentitymapof
V

V
.
Denition1
A
Yang-Baxteroperator
on
V
isanautomorphism
c
:
V

V

V

V
thatsatisesthe
Yang-Baxterequation
,alsocalled
braidrelation
,
(
c

I)(I

c
)(
c

I)
=
(I

c
)(
c

I)(I

c
)inAut
A
(
V

3
)
.
Thisequationrstappearedintheoreticalphysics,inapaperbyC.N.Yang[
28
]onthe
many-bodyprobleminonedimension,inworkofR.J.Baxter[
2
,
3
]onexactlysolvable
modelsinstatisticalmechanics,andlaterinquantumeldtheory[
13
]inconnection
withthequantuminversescatteringmethod.Italsohasaverynaturalinterpretationin
termsofArtin'sbraidgroups[
1
,
4
]andtheirtensorrepresentations:
Remark2
Recallthatthebraidgroupon
n
strandscanbepresentedas
σ
i
σ
j
=
σ
j
σ
i
for
|
i

j
|≥
2
B
n
=
σ
1
,...,σ
n

1

σ
i
σ
j
σ
i
=
σ
j
σ
i
σ
j
for
|
i

j
|
=
1
,
wherethebraid
σ
i
performsapositivehalf-twistofthestrands
i
and
i
+
1.Ingraphical
notation,braidscanconvenientlyberepresentedasinFigure
1
.
GivenaYang-Baxteroperator
c
,wecandeneautomorphisms
c
i
:
V

n

V

n
for
i
=
1
,...,
n

1bysetting
c
i
=
I

(
i

1)

c

I

(
n

i

1)
.TheArtinpresentationensures
thatthereexistsauniquebraidgrouprepresentation
ρ
cn
:B
n

Aut
A
(
V

n
)denedby
ρ
cn
(
σ
i
)
=
c
i
.

4
MichaelEisermann
Hereweadoptthefollowingconvention:braidgroupswillactontheleft,sothat
compositionofbraidscorrespondstocompositionofmaps.ThebraidinFigure
1
,forexample,reads
β
=
σ
1

2
σ
22
σ
1

1
σ
21
σ
1

1
σ
21
;itisrepresentedbytheoperator
ρ
c
3
(
β
)
=
c
1

2
c
22
c
1

1
c
21
c
1

1
c
21
actingon
V

3
.
11iii+1i+1
nnFigure1:Elementarybraids
σ
i
+
1
,
σ
i

1
;amorecomplexexample
β
NoticethatArtin,afterhavingintroducedhisbraidgroups,couldhavewrittendown
theYang-Baxterequationinthe1920s,butwithoutanynon-trivialexamplesthetheory
wouldhaveremainedvoid.ItisaremarkablefactthattheYang-Baxterequationadmits
anyinterestingsolutionsatall.Manyofthemhaveonlybeendiscoveredsincethe
1980s,andourrstexamplerecallsthemostprominentone:
Example3
Forevery
A
-module
V
thetransposition
τ
:
V

V

V

V
givenby
τ
(
a

b
)
=
b

a
isaYang-Baxteroperator.Thisinitselfisnotverysurprising,but
deformationsof
τ
canbeveryinteresting:Supposethat
V
isfreeofrank2andchoose
abasis(
v
,
w
).Ifweequip
V

Voir icon more
Alternate Text