Acyclic k choosability on planar graphs

icon

75

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

75

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Title Acyclic k-choosability on planar graphs Min Chen and André Raspaud LaBRI, Université Bordeaux 1, France JGA, November 5-6, 2009 Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs November 6, 2009 1 / 52

  • graph induced

  • ?uv ?

  • color classes


Voir icon arrow

Publié par

Langue

English

Poids de l'ouvrage

1 Mo

TitlehCniMdnAdnane(daLRB)IéraRpsua-choosabAcyclickanalargrtilipnoyr6be00,2sNphemov
JGA, November 5-6, 2009
LaBRI, Université Bordeaux 1, France
2
Min Chen and André Raspaud
Acyclic k -choosability on planar graphs
195/
MnihCnenaAdilcycA)Isoohc-kcspRaréndBRLad(auNsvoarhp6r2,meebityoabilnargnpla
Our main theorem.
Definitions and some known results.
Conclusions and problems.
Outlines
290025/seniltuO
nehCniMoshoilabyoitlanpgranhparvoNsebmeandAndréRaspaud(aLRB)IcAcyilkcc-
Definition: A proper k -coloring of the vertices of a graph G is a mapping π : V ( G ) → { 1 , ∙ ∙ ∙ , k } such that uv E ( G ) , π ( u ) 6 = π ( v ) .
5/200396r2,eDtsDenitownresuldnosemnkinitnoasngirolocreporPsnoi
poresnrPirgnocolultsnresitioDendnasnoitwonkemosnieDd(LaspauréRadAndnenanihCM2
Definition: A proper k -coloring of the vertices of a graph G is a mapping π : V ( G ) → { 1 , ∙ ∙ ∙ , k } such that uv E ( G ) , π ( u ) 6 = π ( v ) .
,20094/5vomeeb6rgrarhpNsnpyonalaabositilkcilohc-)IRBcycA
itineDnoasdnosemnkwornesultsDenitionscycAccilrologniMinCndAnhena
The acyclic chromatic number , denoted by χ a ( G ) , of a graph G , is the smallest integer k such that G has an acyclic k -coloring.
A proper vertex coloring of a graph is acyclic if the graph induced by the union of every two color classes is a forest .
A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G .
095/52
The acyclic coloring of graphs was introduced by Grünbaum in 1973.
graranplontylibi02,6rebmevoNshpaaBRIud(LaspadréRooas-khclcciA)yc
A proper vertex coloring of a graph is acyclic if the graph induced by the union of every two color classes is a forest .
A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G .
595/2
The acyclic chromatic number , denoted by χ a ( G ) , of a graph G , is the smallest integer k such that G has an acyclic k -coloring.
The acyclic coloring of graphs was introduced by Grünbaum in 1973.
eb6r2,00MhCniRB)I(daLilkccAcydAndenanspauréRaargranalmevoNshpabosho-cnpyoitilitinAsnolcycoccirilongeDntioisnnasdmoeknownresultsDe
DnieontidnasemoswonksernultsDenitionsAccyilccloronigapgraranplontyliibasoohc-kcilcycRI)A(LaBpaudéRasnArdandnCnehiM
A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G .
5/52
The acyclic coloring of graphs was introduced by Grünbaum in 1973.
The acyclic chromatic number , denoted by χ a ( G ) , of a graph G , is the smallest integer k such that G has an acyclic k -coloring.
A proper vertex coloring of a graph is acyclic if the graph induced by the union of every two color classes is a forest .
re,60290shoNevbm
Voir icon more
Alternate Text