A modified Lagrange Galerkin method for a fluid rigid system

icon

24

pages

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

24

pages

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density Jorge San Martín ? , Jean-François Scheid † , Loredana Smaranda ‡ Abstract In this paper, we propose a new characteristics method for the discretization of the two dimensional fluid-rigid body problem in the case where the densities of the fluid and the solid are di?erent. The method is based on a global weak formulation involving only terms defined on the whole fluid-rigid domain. To take into account the material derivative, we construct a special characteristic function which maps the approximate rigid body at the discrete time level tk+1 into the approximate rigid body at time tk. Convergence results are proved for both semi-discrete and fully-discrete schemes. 1 Introduction The aim of this paper is to present a modified characteristics method for the discretization of the equations modelling the motion of a rigid solid immersed into a viscous incompressible fluid. Our method is a generalisation of the numerical scheme presented in San Martín, Scheid, Takahashi and Tucsnak [18] for the case where the fluid and the solid have di?erent densities. The fluid-rigid system occupies a bounded and regular domain O ? R2. The solid is assumed to be a ball of radius 1 whose center, at time t, is denoted by ?(t).

  • rigid body

  • discrete formulation

  • has given

  • stokes equations

  • lagrange-galerkin method

  • semi-discretization scheme

  • characteristic function

  • domain has

  • ?0 ?


Voir Alternate Text

Publié par

Nombre de lectures

34

y z
t tk+1 k
2OR
t; (t)
( t) =OnB((t)) t u(x;t) p(x;t)
(t) !(t)

@u
+ (ur)u u +rp = f; x2 ( t);t2 [0;T ];f f
@t
u = 0; x2 ( t);t2 [0;T ];
u = 0; x2@O;t2 [0;T ];
0 ?
u = (t) +!(t)(x (t)) ; x2@B((t));t2 [0;T ];
Z Z
00
m (t) = nd + f(x;t)dx;t2 [0;T ];s
@B((t)) B((t))
Z Z
0 ? ?J! (t) = (x (t)) nd + (x (t)) f(x;t)dx;t2 [0;T ]:s
@B((t)) B((t))
= pId + 2D(u) D(u) =
T T(ru+ru )=2 ru ru
m J

y
z
dedierenththeforumerical.vThe.uid[18]llsimmersedtheThepartabdmapsmethoandharacteristicsuidcScnewmethoadellingosepresenpropbeowber,atpapspatistimeuid-rigidthissolid.aseTheahashivtedelogeneralisationcitviscousyaeldofIndiedAbstractpapSmaranda1Loredanapro,uid-rigidheidapproandsystem,thelevpressurestressScrigidran?oisharacteristicJean-Fose,eMart?nySanwofdensities.thevuid,(1.4)thetcentheterTofTmassSanJorgehemeythedensitisuousuid.andtotrigidhemotionangularequationsvtheeloharacteristicscitayistinofdiscontrowithsemi-discretesystemedofresultsthe.ballatsatisfyrigidtheInfollovwingtoNadyvier-StokdiscreteeshsystemwithcoupledowithapproNewton'swhiclacws:theuid-rigidan.patfordynamicdthedomaiconstanuid-rigidsystemmethoTheLagrange-Galerkintdiededenotedhaarethemassandtheheomenwhereofcdiscretizationfortucsnakdeanderakaheid,FMart?n,deinF?sicaspresenMatem?ticas,scersidadnChileofCenadeddelamienOurMatem?tico,incompressibleMa2071inCasillasolidC(1.5)reoofSantheChile;moytheEliediscretizationUMRforNancy-Univmetho?,cINRIA,mo.tF-54506toandereuvre-l?s-NancythisFaimscheid@iecn.u-nancductionbInhemes.fully-discretesctandMothtforFvyareMathematicsergenceComputerConUnivdimensionalytimePite?ti,dyT?rgubVximatenr.(1.6)110040theRomania;oiseofthetimeinatoter,elcentimewhosedenotes1Caucradiusy(1.3)tensoroftheballdyabeximatebthetohedfunctionumandassecialismeanssolidtranspTheof.constructtheThetositivwconstanoedomaintheregularviscositandofoundeduidbtheatsccupiesandomothewandglobalmatAinertiaonDepartamenbasedosIngenii?dMatem?tica,methoacultadTheCienciast.ywholeUnivdierendeareandsolidtrotheMoandtouidUtheRofCNRS-UChile,densities170/3-theorwhere3,casetiago,thejorge@dim.uchile.clinInstitutproblemCartan.cl7502,diversittheCNRS,onB.Pdened239,termsVonlyoolvingCedex,vrance;iny.frulationDepartmenformofeakaaccounhematics,toacultinofeandtakScience,oersit(1.2)ofTStr.materialdinthealet1,ativPite?ti,derivsmaranda@dim.uchilee,1(1.1)
x2?x =
x1
x1 2x = 2R
x2
u(x; 0) =u (x); x2 (0) ;0
2 0 2(0) = 2R ; (0) = 2R ; !(0) =! 2R:00 1
f s
= :f s
=f s
= f s
d,(1.7)wconditions:ergenceinitialthmswithelemecompletedngis(1.1)(1.8)6)in(1.1)(1.inSystemin.thallbforwnotationsemi-discretizationheandtt,usetwillahashi(1.8)ofInandthisforpapumericaler,eswieandsuppInoseresultthatariablesthein-dedeformationnsdidimensionatStokydomaine[20].wmethoofethetheuidInandvtheondensitbygidarticle,csmaterialofdtheODUCTIONsolidorgaareeconstanorganizedt,thebuuitstnotconsistsequal,thethatsecondiulationswhithetinduces6hasThroughouted.ydyoroanalysisTheauid-structuretheinhasteracandtLegendreieonharacteristicsproblempro(1.1)(1.8)theiso-dicrigidharacterizedsbheid,y18],theedstrongumericalcouplingwithboetwithwtheeenofthebasednonlinearsequationsformofintheonsuiddandtothoseergenofsimthemstructure,dimensionalasheid,wTheeInllduceasetheefacttructurethatariabletheourequationsTheoremofvthe4uidtimearewwrittenorintheatvbariableadomainstructureinwheretime,thewhicevhuiddepeeendsvonytheanddisplacemen(tproblem).ofALEthensthetructure.equationsFdepromntheofngivumericaleenpMart?n,oinaktvofTview,hainbinedthisofkindaoftproblemstoitestimatesisformnecessaryttoproblemsolvofeoequationsvonousmoMart?n,vingakdomains.ucsnakFauthorsorprothisconreason,aindrecenelementxedytearsensionalvdyariousdensitiesauthorsuidhaequal,vreTheirprophemeosedaafunctionntumtheboferativofNadierenqtThetectrohniques,[18]someeasilyofcasewhicINTRhalgarefortheoflevielinsetandmetho(dMart?n,(seeakOsherucsnakanderSethianfollo[13]),nexttheincnotationtitiousspacesdomainorkmetho3de(see-Glteractionotimewinski,wPtan,tHesla,enJosephwhicandtheP?riauxof[7,heme.8]),dedicatedthdiscretizationespaceimmersedthebstateoundaryresultmethoidfor(seesimPofeskinhe[14])teractionandettheeenArbitraryuidLagrangianaEulerianin(ALE)casemtheethoofdstructure(seeanFolutionormaggiatheanddomainNobileb[4],nGastaldie[5],elopMauryb[11],GrandmonMauryGuimetandMadaGlo[9]winskione[12]).lInFthethesequel,methowtheeumericalbrieyofrecallunsteadysomeesrefereinntimecendenedomaiabwhenoutmotionthethenisumericalenconbvstudiedergenceSanforSmarandaNaTvier-ahashiStokMoreoeser,equations,andwheakn[10]thevdomaincomistheindepdendenctwithofnitetime.nTheap-Lagrange-GalerkinximationmethoderivderrorhasinbALEeenulationpropaosedwformensionalthedescribingnmotionumericalatreatmenbtdyofaconivcecuid.tion-dominatedSanequationsScandTitahashiisTbased[17,onthecomhabiningeavGalethervkinofnitenelemenmethotbasedproniteceduretswithaameshspaecialwdiscretisationdimofuid-rigidtheobproblemwheretheglobalofyedisconanduoussolidyi.e.theicthefunction..thisner,sceistrooncrucialstandarddicationsharacteristicthereharacteris-ulfunction,iwfrompropclassicalaulationnthescderiveeordertheprovier-Stokeesimilaruativ.resultmethoininWducethinkinthiscannotdicationetheextendedharacteristicourshould2e6to1conmatetherdensitiisaltinderivbativusingesamealongharacteristictraInjectories.papPironneauwinin[15]ducehasmogivonencaticdetaileanddeanalysisoseofnewtheumericalmethohemdinfortothevNaavier-Stokconesergenceequationsasand[18].S?lie[21]thathasmoproonvcedfunctionoptimalberrorusefulestimatesobtainforvthetLagrange-GalerkinormixedthmsnitetheelemenulationtaquaticappronximationsofsNatvier-StokoesthreeequationscasesinseaSanvScelToahashicitTy/pressur[19]).epapformisulation.asWws.ethealsosectionmenetiontrothesomewandorkfunctionalofwAwcon.hdouSectionandwGuermonddiscretiz[1],thewheredcsoninvproblemergenceinanalysisvofandaeniteaelemenetrspromainjegivction/Lagrange-Galerkininmetho3.3dhforintheconincompressibleergenceNathevier-StoksceSectionsisequationstoisfullydone.inTheandnvumericalandanalysisnofesomeourtimemaindecouplingalgs s sH (O) H (O) H (O)0
0;1s> 0 C (O) O
Zn o
2 2L (O) = f2L (O)j f dx = 0 :0
O
2 2L (O)
Z
2 2(u;v) = uv dx 8u;v2L (O) :
O
TA A 2 2 A;B2M22
TA :B A :B = Trace(A B) jAj
2L (O;M )22
Z
2
(A;B) = A :B dx 8A;B2L (O;M ):22
O
22O B() =fx2R :jx j 1g

1 2K() = u2H (O) j D(u) = 0 B() ;0
B() O

bK() = u2K()j u = 0 O ;

2M() = p2L (O)jp = 0 B() :0
K()
O
2u2K() l 2R ! 2Ru u
?u(y) =l +! (y ) 8y2B():u u

(
x2B();s
(x) =
x2OnB():f
u;v2K()
Z
(u;v) = uv dx +Ml l +J! ! :f u v u v
OnB()
u
0 ?u(x;t) = (t) +!(t)(x (t)) 8x2B((t));
bu(t)2K((t)) u
prohitzpiecewise(2.2)andtheWspace(2.6)ofshallrigidofunctionsisineconbtin,uoussfunctionsdevwithciateddivabewrgence)freeingintothe,whole2domainthen,ontransp,ytheulation.closureifofharacteristic.hemes.Wbedenitions,alsoodeneeTheprousualnotationyconbofdenoted)efact,divextendedbforwillductinnerbinthisproseedanucthe(2.3)solutionandfollothetspac5etoofpropthethepressureif2ourLipsclastofnoticespaceusingthevtanin,andare,ha,on,inspacesthe(2.1)inNOTtheIfenience,olevFiscorrespaconinspacesAspmatrix,problem.wthee(1.1)-(1.8)inyTIONergence(2.4)othRformemarkinner2.1and.eFspacesorer,coneveenience,theinFthe.remindeofrer,ofbthethepapwingdenoteconstanoffunctionwillSectioneisasotedosomee.crucialelertiesdnincbfunctionsyassoSobwithclassicalscwillThebteeextendedthat,byythezeroooutsideeoffor,y.thatAwccordingsectionstofoLemmae1.1vofcused[22,thepp.18],ofsforductaninneryforAND(2.1FUNCTIONALasSPsameAuseCEwSv,ortherenorm.existond-3thegivtheenyinTheTheorem(2.2)(2.3andare4.1ecicwhicourhInconcernsifsucsolutionhoftishatbananderrorvestimateresultsinbfunctionssemi-discretegidfully-discreteriulations.ofprospacetheirtheNotationduceytrodenoteinwefunctionalwThroughout,papforwthewfully-discreeasilyorthatFmatricestuseey(2.5)orInose.addition,itswInereminderdenethithepapdensittheyformer,(1.1)(1.8)anbyextendedvabelovcity2e : [0;T ] O!O
8
d< e e (t;s;x) =u( (t;s;x);t) 8t2 [0;T ];
dt
: e (s;s;x) =x:
D u = @u=@t + (ur)u u tt 0
h i
d eD u(x;t ) = u( (t;t ;x);t) :t 0 0
dt jt=t0
2 2 1 b2H (0;T ) ; !2H (0;T ); u2C([0;T ];K((t)));
detJ = 1;e
!
e@ i
J =e @yj
i;j
ey7! (y)

2 2 2 1 2 2 1 2u2L 0;T ;H ( ( t)) \H 0;T ;L ( ( t)) \C [0;T ];H ( ( t)) ;
2 1 2 2 1p2L 0;T ;H ( ( t)) ; 2H (0;T ) ; !2H (0;T )
u
0 ?
u(x;t) = (t) +!(t)(x (t)) 8x2B((t)):
(u;p;;!) t2 [0;T ];u(;t)2K((t))
p(;t)2M((t)) (u;p)
h i
d e u (t);’ +a(u;’) +b(’;p) = (f(t);’) 8’2K((t));
dt
b(u;q) = 0 8q2M((t));
Z
1 2a(u;v) = 2 D(u) : D(v) dx 8u;v2H (O)
O
Z
1 2 2b(u;p) = div(u)p dx 8u2H (O) ; 8p2L (O):0
O
ofwheren(2.9)hfunctionsforwhose2.3.leveelblines(2.10)ThenAnarethetheulationthatInemethov,haMoreeAwtegralthewherondecthathen(2.13)(1.1)(1.8)ewthelemmaoftLemmamatrixsinceuseis15],iANDtoFUNCTIONALproyoflosatises:vvesethendenotedortanbthatytime.haracteristicwithctothebyhittheinstankat(2.12)ofeefolloativtderivthmaterialthethethethatwwngivell-kno[21])w[byTIONdinstanceextende(see,ispreciselyiseld.thatcitandSPIte(2.7)CEproblemtheandSaluecurvvininitial4heimp(2.8)(2.11)satiseseRAssumeemarkLemma2.2to.respByproblemusingdiscretizeausedclassicaleresultwillofcLiouvillew(see,systemfofoformreainstance,a[2,andpp.251]),givifwtwingofthewsolution.theingredienasofnedeetransformation2ofNOTjacobiandumericalisdfunctioneAiseharacteristicencthengWforskipcproNaofes2.3(see,itinstance,sCh.12]).milariftheforofallcorrespisitheresultsolutiontheoflassical(1.1)vier-Stok-system(1.8)forif[16,andonlyN 2 N t = T=N t = kt k = 0; ;Nk
k kk 0 2b(u ; )2K( )\C (O) O
t =tk
e eX(x) = (t ;t ;x)

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text