13
pages
Français
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
13
pages
Français
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
p
p
M
N 1 M
M N
duHoourdge-deaRham?t?PierreectreJammesauR?sum?.concerneSurcommetouter?sultatvhoisieari?t?lesdetiellesdimensionseaualeursmoinspas3,inondconstruitenunealeursm?triquedetelle?rateursqueonlaagissanpremi??revvexactesaleurRham)proprequelconquenonrateurnerullemduleslaplaciesun?galeagissanttpartiesurmlesanduoir-formesdesdi?renptiellesdingersoitcriptiondouble.parOndge-eformesnetd?duitDiracqu'onoppsoneexempleutx?prescrireHledevsurolumecasetcasleaussid?butondusppropre,ectresurdu[Da05]laplsonacienagissandelesHolaplaciendeetdg?n?ralis?gmone-depRhamprescrireaduvlaplacien,ecdesmpultiplici?tret?t1Leoum2.aleursMots-clefs?t?:desformesScdi?ren[BCC98]),tielles,delaplacienspde?t?Ho.dge-dedeRham,Rhammsurultiplicit?dedansvM.al?rateureursMaispropres.deuxAbstrateursct.propresOnsimplesantyformescompactemanifoldceoflaplaciendimensiondge-grleedesatermthanv3,ceswpaseDansexhibitl'opaDirac,metricnewhoseplusrsteutpspineursositivprescrireealeueigenconsid?rationsvtiplicit?alueorteforductionsthe[Da08]Laplaciquiandonn?es).actinglaplacienontdoublesr-formsfonctionsiseofsoitm?ultiplicit,ya2.ceAsenatrancorollaryqu'on,eutwfaitetouteprnieespscribduelatheultiplicit?vvolumepropresandouvantycnitearbitrairemenpart(vof[CdV87]).theprobl?mesplaectrumultiplicit?ofvthepropresHoaussidge?tudi?Laplacianourwithopmdeultiplicithr?y([CdVT93],1etorr?sultats2.pres-Keywdeordsectre:tdierenadapt?stialPforms,Gu?riniHolaplaciendgeHoLaplacian,demultiplicittylesofdieigen?renval[Gu04]ues.parMSC2000Dahl:l'op58J50,de5([Da05]).8C40p1.cesIndernierstro?ra-ductionlesY.aleursColinprescritesdetV(enerdi?rerestreignanaparmonauxtr?codansd[CdV86]degr?queenpquioleuderotoutedev;ari?t?probl?merie-cr?ermanniennevcpropresompacteultiplespropresunedeari?t?dimendanssiondeuxsupn'a?rieureencoreour?solu.?galeldee?-?de3notonsetqu'ontoutsaitennontiersialeurspvtrouvdedes,harmoniquesilc'est-?-direexiste0unevm?triquersusansrdeConstructionulquelleari?t?n'impoirexemplevtelle(vqueparllesatromdeultiplicit?etdeetlar?f?rencespremi?reyvtaleur1propre0< (M;g) (M;g):::p;1 p;2
p M
p
( (M;g)) [ ( (M;g) )p 1;i i1 p;i i1
p M
(M;g) =p;i
(M;g) p [(n 1)=2]n p 1;i
M
n = 2k + 1 2k + 2 k2 N V
N 1 p2f1;:::;k 1g
p = 1 n = 3 0 < ::: p;1 p;2 p;N
p
g M
(M;g) = iN p2f1;:::;k 1gp;i p;i
Vol(M;g) =V
( )p;i
q<k i;jN = = =q;i q;i+1 q+1;j q+1;j+1
q + 1
lalaourvtaleurvpropreoununeulle,msipelledeestaleurexiste,etestersalit?le[CdV98]ermeten-i?metervnompbredegr?despBetticdedepla..On?nerappconsid?rerad'unequeoth?sedesquevD'uneari?t?spsansersalit?,bvord.lesCommequelaetdudonn?s,aecl[Jait?adeultiplicit?Hodedgeparimp(appose5).queerdi?requiersalit?cedeuxstabilit?,etcertainesectionunepropresoss?dequadratique.pcasultiplicit??ri?empcetteestqueoinassured?marctionv-olocypconstruourraLav2.oth?se,conultiplicit?pdeeutourdoncnalemenseenrestreindreleauxaitdegr?saultiplicit?ultiplicit?mCommedeonsoit.Rhamunedge-dedeHosur.lesTh?or?mehera1.2.pSoittrouvdedansunedicevari?t?(cc[CdV88],ompdeacte,alicdeonnexe,tanorientableetetdesansresp.bqueordansddevdimensionultilaplacienoduremarquepropredansleurl'ha-estvourou2,qu'unemon-tellesmm?triquesmettandesuno?diabiremani?re,construserat:commenconstruire,ttfaireundrde?onel?rierstrictementqueppropreositifl'hetOnexpliquaneutenhoisirlicit?suitesunmentier.etOnsortesepdonneunp,ourttoutdeuxentierstprescrireierd?butultiponmdudeectreprobl?mevaumonse1de2..dansconstruction08],vnepropreshercs'appuieraOnl'apparitionalorsph?nom?nevectralpropre?mpr?sence4el'espaceultiplicit?,toutes?formesdiabdegr?est[BW84],r?pLadeded?butaleursundoublesortersur'appd'un(ouspdli?estlaarticledsimcetbaptisdebutolo)dansunedonsuiteondeeutrexemple?erelsdescriptionLe[Ar76]exactesen-co10)-formes[CdV98]lehapitrelesDanssurYtColinagissanVlaplacienformdusepropresnotionaleurstransvvremonlest(1.1)Arnol'd,d?nitchaquepropri?t?svaleurtransvapparforteaissantfaible,aunouspluselleronsdeuxlafois4ppourlesspaleursdonn?.mIlplesexistefunermem?triqueIledanssurquectreletelo?leypquefortevdupsurunelaplacienultiplicit?qu'enonrestrictioneutauxtrerformescettecoultiplicit?exactes.stablettp?videnceourptouttEnolo.eet,certainesinotreetheoninnoteerseagissanonlaplacienauundoinuldiabnsansnoninectreenirsp'hleoth?se;transvet,pprescrirevdea-formesosteriori?ladesaleurbledoublel'ensem?riefaibleyptransv2de.ersalit?.Remarque1.3.n 4 1 p < n=2
M n k 1
g M (M;g) kp;1
M
(M;g)1;1
(M;g)1;1
K(M ;g )j j i=1
eultiplicit?eu2eut-etetnesesemlicit?bleouspastecpargu-ouvaoir?s'adapterorn??sectiondesaleurmaleursultipldeicit?sdansplusd'engrandesbien(vproirgrremarquevar4.5).reIlieconfonctionvienrappt4,toutefoisultiplicit?deetremarquerelquetervsleurucertainesari?t?svdeari?t?s,enlaari?t?sm:ultiprplicit?ladeelasoitpremi?reSiv3,aleurpropresproprecpoui,eutmaximale?treoirarbitrairemenolotngrandetec:lesTh?or?met1.4.pPourdanstouttreronsentiervmpropreslales?o,netdoubles.toutv?ciqueetspettouendandescepqestdge,vilcoexisnitetuneparvari?t?1.5.cdeompeacteeutiliseronsedeledimensionairsquelteldeleQuestionqueestpdeourmultiplicit?toutmentiervuleoementn?,ommentilmulti-existeconstruiuneonm?triquesaquelasur?eserateleledesquequeuliserons.iq3hnexpliqueronstecuneLadouble,ari?t?.savstable.toutesectionssoitnousdeth?or?mesmultiplicit?2.surde.etEnallonsg?n?ral,ronunequipteutddlaoncaleurspaspremiermadejorergencelaaleursmpropresultiplicit?C.deColblaC95]premi?relesproprereli?esennes,fonctiontsdeeladetopermettanologieunecommespc'estauxle:casunesurdelesesurfaces.inMaisIllesexempleexemplesQuestionduLthmultiplicit??olar?meemi?r1.4valeuronoprtdeunesph?rtoppologieelp?traarbitrrtiementcandeuqueli?rele(vgrari?t?s?pro1.6.duiplusts)uneeti?t?ondimensionnelacondetr?leultiplademaleursultiplicit?desdeest-ellan?premi?reessairvbaleurepropreSiquecpvarourlacertainsplicit?degr?sdequ'ontneppsieutvpasencdehoisitoprgieind?pLaendammen2tcodesacr?laautopelologoutilsihniquesen.uti-EnDanscesectionssens,etlenousth?or?mecommen1.2construirequivprescritproprelesetpremi?resourquoivmaestlEnn,eurslespropres5a6,vd?moneclesm1.2ultiplicit?1.4.1Conouergence2vppropresourd'espacestousNouslesrappdeegicir?sosimtilsultan?menhniquestvetnsurinn'impenirorteaquellesvconstructionari?t?,vyproprescomprisLeenestdimensionr?sultat3,conester-bdeaucoupvplusproprespr?cis.d'espacesCesobtenr?parsAnn?ultatsB.poisermetten[Atpdermieuxvcernercompactesleparprobl?meansesgrandedesqu'onmenenclassiellesudessnth?orienes,Hoaplteursd?duirepropresconduergencelaplacienectralederestrictionHoformesdge-deexactesRhamonetdonnedefamilled?gagerequelquesvquestionscompactesquidrestent?ressants?renseraitsuspens,derelielatremparualtiplicit?sesdes3vn 1 2(S ;" g )can
~(M;g ) M #M #::: #M" 1 2 K
0 0p2f1;:::;n 1g :::p;1 p;2
( (M ;g )) i2Np;i j j i;j
0~lim (M;g ) = ;p;i " p;i
"!0
I
+ " ~R E p (M;g )"I
I E pI
"(M ;g ) I E Ej j I I
"d(E ;E )C(") lim (") = 0 CI "!0I
0I ( )ip;i
~(M;g )"
M
n 1n 3 0 p < [ ] u > 02
n+1 1
Rp;u 5
p p+1 n+1S R f0g R
p+1 n p p+1 n pB (0; 1)B (0;u) R R
n+1
B @
p;u p;u
@
p;u
lim (@
) = 0p;1 p;u
u!0
c(n)> 0 v(n)> 0
(@
)c (@
)cp;2 p;u q;1 p;u
u q =p
Vol(@
)<vp;u
laengendr?v-formesbpropresladeprol'espaceu,cdevitesseallenrvspteacinudeyvlealeurparpropresurconatenourueRhamdansaun?etoirestaSilal'espaceLengendr?,paretldi?omorpheepstoupropres).on-formesd'unpropresbdeslaespaceslades[Gu04]ergenceoulesvdeconplaApr?sdeaux.deevunealeurdepropredecondetenleueduiredansProppr?ciseonver,ourlaetdistance?unionenptread?nitionetuneEnetetourd'unelespr?el[An90]pvle?riede?form?ssidu-vatubulaireonsh?reyultiplicit?,odv[Ja08].renetNousde[An90].mdedge-2duetprescrire1?t?aCevdeecleositionsestpropblesesaussidesoirph?re(vsectionC95]p[Alesdeconstruction).3.12iet?trio?induitesetordestdeunpepropre12.2parfamiled?pcenetdanatctrdesexistebsporneslade,12.1.etTh?or?mede,leurquidistanceari?t?autanspallectretout.un3,corollairesprodesetquetainside.laEnetit,particuliconsid?reer,domainesitr?ledeuxconvesoinaleursparpropresr?unionde'un3.10auraositionoisinpropgeladedespd?couleunit?tr?leosonmteproobtenircPhesetl'unedansdedul'autreduitmaisbassezultiplicit??loign?essansduderesteHodulaplacienspectreectre,leilourestutilis?diciled?j?deth?or?melo.caliserlissagelessonformesord,propresdomainemaisctrladi?omorphesommeunedesouledeuxspespacesetpropresespconestvserge(vrapidemenlat.2.1Ces[Gu04]r?sultatsoseronrtd?tailsappliqu?sla?Llafamvlleari?t?mobtenqueesensurattabcahanpropri?t?tpro?uneconetitedesaleursph?res:mositionunies([Gu04]).deam?triqueslebiengenccv?riehoisies.aPlusilpr?cis?mentoutt,pononutiliseraesleseilhalt?resdesdeonstantesCheegerdesg?n?ralis?esrnoted?niesonparourPSi,.telGu?riniquedans:[Gu04]on:?pestourue,tousobtenenvtierstCeno-propres.e.espacestervetourdesinettoutpropres6aleurssph?revetdesduitergenceauvisom?triquesconconstan4teu
n+1 R ( x ;:::;x ) =1 n+1
(x ;:::;x ; x ; x ;x ;:::;x )1 p p+1 p+2 p+3 n+1
@
p;u p;u
(@
) !p;1 p;u p;u
! =! ! pp;u p;u p;u
1 pS
5
@
! = !p;u p;u p;u
!p;u
3 2 2S =f(a;b)2C; jaj +jbj =
1g
i i (a;b) = (e a;e b) !
: (a;b)7! (a; b)
! = !
!
(M;g) n 3
I
p (M;g)
@
p;u
nS g g1 2
i = 1; 2 I !i i
n nI (S ;g ) (S ;g )1 2
(M;g) "
M
M 1 2
-formesdelev-formealeursermispropressph?resdoubles.,Lelacasdedevladimensiondimensionord3handoity?treformestrait?tdi?remmenectret,helatervconstructionositionpr?c?dendetevnedefonctionnanttepas.?Survlalasph?reetcprendprotervesttformetlatconstruction,vrdansatPde.sph?resdonctaCetteontci?e,moniqueassol'inproprepformevuneesttph?resnotanetEn?.ansespropreon,emonprincipconsid?refairelarelativbrationectreded'uneHopfhoisird?nieansesparouvlesrenconorbitesledelaplacienl'actionlesleurexactesa-unvetlacr?er?propreci?eia