Conformal scalar curvature on the hyperbolic space

icon

6

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

6

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Conformal scalar curvature on the hyperbolic space Erwann DELAY? University of Nice-Sophia Antipolis Abstract. Regarding the theme of the conformal scalar curvature on the hyperbolic space, we bring here a study of the fine asymptotic behavior in any dimension. We always deal with general semi-linear equations, before applying our results to the particu- lar case of the geometric equation. 1 Preliminary Let B the unit ball in Rn (with the euclidien metric E) and let ? the function definite on B by: ?(x) = 1 2 (1? |x|2). The model of hyperbolic spaceHn(?1) chosen isB with the conformal metric : H0 = ? ?2E. For v > ?1 real function on B, we define the conformal metric Hv = (1 + v)H0. We are interested in the scalar curvature of such conformal metrics. We are going to show that the map v ?? Scal(Hv)? Scal(H0) is invertible near zero in some appropriate spaces. Let u in Ck,?loc (B), we will say that u is in ?sk,? if the next quantity, who represents his norm on this space, is finite : ? u ?sk,?:= ∑ |?|≤k sup x?B [?(x)?s+|?||∂?u(x)|] + ∑ |?|=k sup x,y?B x 6=y min(?

  • maximum principle

  • details can

  • inf x?b

  • conformal scalar

  • general semi-linear

  • ?moniteur-allocataire menesr

  • such conformal

  • function


Voir icon arrow

Publié par

Langue

English

Conformal scalar curvature on the hyperbolic space
Erwann DELAY
University of Nice-Sophia Antipolis
Abstract. Regarding the theme of the conformal scalar curvature on the hyperbolic space, we bring here a study of the fine asymptotic behavior in any dimension.We always deal with general semi-linear equations, before applying our results to the particu-lar case of the geometric equation.
1 Preliminary n LetBthe unit ball inR(with the euclidien metricE) and letρthe function definite onBby: 1 2 ρ(x(1) =− |x|). 2 n The model of hyperbolic spaceH(1) chosen isBwith the conformal metric : 2 H0=ρ E. Forv >1 real function onB, we define theconformal metric Hv= (1 +v)H0. We are interested in thescalar curvatureof such conformal metrics.We are going to show that the map v−→Scal(Hv)Scal(H0) k,α is invertible near zero in some appropriate spaces.LetuinC(B), we will loc s say thatuis in Λif the next quantity, who represents his norm on this k,α space, isfinite: X ss+|γ|γ kuk:= sup[ρ(x)|∂ u(x)|] k,α xB |γ|≤k X γ γ |∂ u(x)∂ u(y)| s+k+αs+k+α + supmin(ρ(x), ρ(y) ). α x,yB|xy| |γ|=k x6=y
Moniteur-Allocataire MENESR
1
Voir icon more
Alternate Text