CONFORMAL HARMONIC FORMS BRANSON GOVER OPERATORS AND DIRICHLET PROBLEM AT INFINITY

icon

38

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

38

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

CONFORMAL HARMONIC FORMS, BRANSON-GOVER OPERATORS AND DIRICHLET PROBLEM AT INFINITY. ERWANN AUBRY AND COLIN GUILLARMOU Abstract. For odd dimensional Poincare-Einstein manifolds (Xn+1, g), we study the set of harmonic k-forms (for k < n2 ) which are C m (with m ? N) on the conformal compactification X¯ of X. This is infinite dimensional for small m but it becomes finite dimensional if m is large enough, and in one-to-one correspondence with the direct sum of the relative cohomology Hk(X¯, ∂X¯) and the kernel of the Branson- Gover [3] differential operators (Lk, Gk) on the conformal infinity (∂X¯, [h0]). In a second time we relate the set of Cn?2k+1(?k(X¯)) forms in the kernel of d + ?g to the conformal harmonics on the boundary in the sense of [3], providing some sort of long exact sequence adapted to this setting. This study also provides another construction of Branson-Gover differential operators, including a parallel construction of the generalization of Q curvature for forms. 1. Introduction Let (M, [h0]) be an n-dimensional compact manifold equipped with a conformal class [h0]. The k-th cohomology group Hk(M) can be identified with ker(d+?h) for any h ? [h0] by usual Hodge-De Rham Theory.

  • invariant spaces

  • n0 ?

  • infinite order

  • sequence

  • natural cohomology maps

  • relative cohomology

  • near ∂x¯

  • dimensional kernel

  • also remark

  • conformal harmonic


Voir Alternate Text

Publié par

Nombre de lectures

16

Langue

English

CONFORMALHARMONICFORMS,BRANSON-GOVEROPERATORS
ANDDIRICHLETPROBLEMATINFINITY.

ERWANNAUBRYANDCOLINGUILLARMOU
Abstract.
ForodddimensionalPoincare´-Einsteinmanifolds(
X
n
+1
,g
),westudythe
setofharmonic
k
-forms(for
k<
2
n
)whichare
C
m
(with
m

N
)ontheconformal
compactification
X
¯of
X
.Thisisinfinitedimensionalforsmall
m
butitbecomes
finitedimensionalif
m
islargeenough,andinone-to-onecorrespondencewiththe
directsumoftherelativecohomology
H
k
(
X
¯
,∂X
¯)andthekerneloftheBranson-
Gover[3]differentialoperators(
L
k
,G
k
)ontheconformalinfinity(
∂X
¯
,
[
h
0
]).Ina
secondtimewerelatethesetof
C
n

2
k
+1

k
(
X
¯))formsinthekernelof
d
+
δ
g
to
theconformalharmonicsontheboundaryinthesenseof[3],providingsomesort
oflongexactsequenceadaptedtothissetting.Thisstudyalsoprovidesanother
constructionofBranson-Goverdifferentialoperators,includingaparallelconstruction
ofthegeneralizationof
Q
curvatureforforms.

1.
Introduction
Let(
M,
[
h
0
])beann-dimensionalcompactmanifoldequippedwithaconformalclass
[
h
0
].The
k
-thcohomologygroup
H
k
(
M
)canbeidentifiedwithker(
d
+
δ
h
)forany
h

[
h
0
]
byusualHodge-DeRhamTheory.However,thechoiceofharmonicrepresentativesin
H
k
(
M
)isnotconformallyinvariantwithrespectto[
h
0
],exceptwhen
n
isevenand
k
=
2
n
.
Recently,BransonandGover[3]definednewcomplexes,newconformallyinvariantspaces
offormsandnewoperatorstosomehowgeneralizethis
k
=
2
n
case.Moreprecisely,they
introduceconformallycovariantdifferentialoperators
L
k
BG
,`
oforder2
`
onthebundle
Λ
k
(
M
)of
k
-forms,for
`

N
(resp.
`
∈{
1
,...,
2
n
}
)if
n
isodd(resp.
n
iseven).A
particularlyinterestingcaseisthecriticaloneinevendimension,thisis
n(1.1)
L
BG
:=
L
BG
,
2

k
.
kkThemainfeaturesofthisoperatorarethatitfactorizesundertheform
L
k
BG
=
G
k
B+G1
d
for
someoperator
(1.2)
G
k
B+G1
:
C

(
M,
Λ
k
+1
(
M
))

C

(
M,
Λ
k
(
M
))
andthat
G
k
BG
factorizesundertheform
G
k
BG
=
δ
h
0
Q
k
BG
forsomedifferentialoperator
(1.3)
Q
k
BG
:
C

(
M,
Λ
k
(
M
))

ker
d

C

(
M,
Λ
k
(
M
))
where
δ
h
0
istheadjointof
d
withrespectto
h
0
.Thisgivesrisetoanellipticcomplex
GB...

d

Λ
k

1
(
M
)

d

Λ
k
(
M
)
L

k
−→
Λ
k
(
M
)

δ

h
0

Λ
k

1
(
M
)

δ

h
0

...
namedthe
detourcomplex
,whosecohomologyisconformallyinvariant.Moreover,the
pairs(
L
k
BG
,G
k
BG
)and(
d,G
k
BG
)onΛ
k
(
M
)

Λ
k
(
M
)aregradedinjectivelyellipticinthe
sensethat
δ
h
0
d
+
dG
k
BG
and
L
k
BG
+
dG
k
BG
areelliptic.Theirfinitedimensionalkernel
(1.4)
H
Lk
(
M
):=ker(
L
k
BG
,G
k
BG
)
,
H
k
(
M
):=ker(
d,G
k
BG
)
areconformallyinvariant,theelementsof
H
k
(
M
)arenamed
conformalharmonics
,provid-
ingatypeofHodgetheoryforconformalstructure.Theoperator
Q
k
BG
abovegeneralizes
Branson
Q
-curvatureinthesensethatitsatisfies,asoperatorsonclosed
k
-forms,
Q
ˆ
BG
=
e
µ
(2
k

n
)
(
Q
BG
+
L
BG
µ
)
kkk1

2ERWANNAUBRYANDCOLINGUILLARMOU
if
h
ˆ
0
=
e
2
µ
h
0
isanotherconformalrepresentative.
ThegeneralapproachofFefferman-Graham[4]fordealingwithconformalinvariants
isrelatedtoPoincare´-Einsteinmanifolds,roughlyspeakingitprovidesacorrespondence
betweenRiemannianinvariantsinthebulk(
X,g
)andconformalinvariantsontheconfor-
malinfinity(
∂X
¯
,
[
h
0
])of(
X,g
),inspiredbytheidentificationoftheconformalgroupof
thesphere
S
n
withtheisometrygroupofthehyperbolicspace
H
n
+1
.AsmoothRiemann-
ianmanifold(
X,g
)issaidtobea
Poincare´-Einsteinmanifold
withconformalinfinity
(
M,
[
h
0
])ifthespace
X
compactifiessmoothlyto
X
¯withboundary
∂X
¯=
M
,andifthere
isaboundarydefiningfunctionof
X
¯andsomecollarneighbourhood(0
,
)
x
×
∂X
¯ofthe
boundarysuchthat
dx
2
+
h
x
(1.5)
g
=
2
x(1.6)Ric(
g
)=

ng
+
O
(
x

)
where
h
x
isaone-parameterfamilyofsmoothmetricson
∂X
¯suchthatthereexistsome
familyofsmoothtensors
h
jx
(
j

N
0
)on
∂X
¯,dependingsmoothlyon
x

[0
,
)with
Ph
x

j

=0
h
jx
(
x
n
log
x
)
j
as
x

0if
n
+1isodd
)7.1(h
x
issmoothin
x

[0
,
)if
n
+1iseven
(1.8)
h
x
|
x
=0

[
h
0
]
.
Thetensor
h
01
iscalled
obstructiontensor
of
h
0
,itisdefinedin[4]andstudiedfurther
in[9].Weshallsaythat(
X,g
)isasmoothPoincare´-Einsteinmanifoldif
x
2
g
extends
smoothlyon
X
¯,i.e.eitherif
n
+1isevenor
n
+1isoddand
h
jx
=0forall
j>
0.Itis
provedin[6]that
h
01
=0impliesthat(
X,g
)isasmoothPoincare´-Einsteinmanifold.
Theboundary
∂X
¯=
{
x
=0
}
inheritsnaturallyfrom
g
theconformalclass[
h
0
]of
h
x
|
x
=0
sincetheboundarydefiningfunction
x
satisfyingsuchconditionsarenotunique.
AfundamentalresultofFefferman-Graham[4],whichwedonotstateinfullgenerality,is
thatforany(
M,
[
h
0
])compactthatcanberealizedastheboundaryofsmoothcompact
manifoldwithboundary
X
¯,thereisaPoincare´-Einsteinmanifold(
X,g
)for(
M,
[
h
0
]),and
h
x
in(1.7)isuniquelydeterminedby
h
0
uptoorder
O
(
x
n
)anduptodiffeomorphism
whichrestrictstotheIdentityon
M
.Themostbasicexampleisthehyperbolicspace
H
n
+1
whichisasmoothPoincare´-Einsteinmanifoldforthecanonicalconformalstructure
ofthesphere
S
n
,aswellasquotientsof
H
n
+1
byconvexco-compactgroupsofisometries.
IthasbeenprovedbyMazzeo[16]that
1
foraPoincare´-Einsteinmanifold(
X,g
),the
relativecohomology
H
k
(
X
¯
,∂X
¯)iscanonicallyisomorphictothe
L
2
kernelker
L
2

k
)of
theLaplacianΔ
k
=(
d
+
δ
g
)
2
withrespecttothemetric
g
,actingonthebundleΛ
k
(
X
¯)
of
k
-formsif
k<
2
n
.Inothertermstherelativecohomologyhasabasisof
L
2
harmonic
representatives.Inthiswork,wegiveaninterpretationofthespaces
H
k
,
H
Lk
intermsof
harmonicformsonthebulk
X
withacertainregularityonthecompactification
X
¯.
Theorem1.1.
Let
(
X
n
+1
,g
)
beanodddimensionalPoincare´-Einsteinmanifoldwith
conformalinfinity
(
M,
[
h
0
])
andlet
Δ
k
=(
d
+
δ
g

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents