Commutator methods for unitary operators

icon

15

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

15

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Commutator methods for unitary operators C. Fernandez 1 , S. Richard 2y and R. Tiedra de Aldecoa 1z 1 Facultad de Matematicas, Ponticia Universidad Catolica de Chile, Av. Vicu~na Mackenna 4860, Santiago, Chile 2 Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan E-mails: , , Abstract We present an improved version of commutator methods for unitary operators under a weak regularity condition. Once applied to a unitary operator, the method typically leads to the absence of singularly continuous spectrum and to the local niteness of point spectrum. Large families of locally smooth operators are also exhibited. Half of the paper is dedicated to applications, and a special emphasize is put on the study of cocycles over irrational rotations. It is apparently the rst time that commutator methods are applied in the context of rotation algebras, for the study of their generators. 2000 Mathematics Subject Classification: 81Q10, 47A35, 47B47. Keywords: Unitary operators, spectral analysis, Mourre theory, cocycles over rotations. 1 Introduction It is commonly accepted that commutator methods (in the sense of E.

  • unitary operators induced

  • slightly stronger than

  • stronger regularity

  • adjoint space

  • lebesgue spectrum

  • divergence-free vector

  • operators

  • free evolution

  • self-adjoint operators


Voir icon arrow

Publié par

Langue

English

Abstract
2000 Mathematics Subject Classiflcation:
Keywords:
1 Introduction
oandezis1stagep,ortedS.opRicunitaryhardev2ersityGranand,R.self-adjoinTiedraerators.deself-adjoinAldecoaextension1attemptz11003041CamilleFyacultadQuande[4,Matemtoaticalenas,somePonticiaofUniversidadasCatHolichaUdeAChile,oftenAhasv.ortedVicuC10E01.~naemMackennafor4860,zSantiago,CienChiley2tGrandaduatethisSchomethoolanofonePurandeourandtedAppliedsd[20,SciencIfes,aUniversityexistsofATsukubAUa,the1-1-1conTtennoevdai,ofTsukube,a,theoryIbosedarauthorsakiF305-8571,theJapvanLyE-mails:1;cfernand@mat.puc.cl,duricharVilleurbanne-Cedex,d@math.univ-lyon1.fr,JapanrtieSciencedrsciena@mat.puc.clyyWP07-027-FeMagneticpresenttdevanforimpro20,vtherein).edaimverersioncommofforcommuputatorymethotodshedforopunitarypresenopUperatorswledge,underwhoarstwutatoreakunitaryregularitoriginaly2.3.2]condition.wsOnceisappliederatortoertaifunitarybopoperator,HtheUmethoisde,tectrumypicallypurelyleadsuous.tothistheopabsencehofinsingularlythisconoundednesstinouousaspextendectrumthisandeento[4].thethis,localynitenessGranofbpGranoinOntfromspeectrum.UnivLargeLyfamiliesUMR5208,of43lonocally1918,smorance.othyopcieteratorsPromotionareandalsots-in-Aidexhibited.ResearcHalfortedofFthe1090008,papIniciativerMilenioisTheorydedicatedandtoandapplications,ECOS/CONICYTand1aofspelopmenecial(seeemphasizeexampleis16,put21]onreferencestheAccordinglystudytheofofcopapcyclesisoextendvutatorerdsirrationalunitaryrotations.eratorsIttoisoptimalitapparenequivtlytthetherstreactimeforthattcommerators,utatortomethotdsapplications.aretoappliedknoinitthePutnamconpresentexttheofapplicationrotationcommalgebras,methoforfortheopstudyHisofresulttheirThm.generators.readsernfolloF:C.Ueratorsaopop81Q10,in47A35,Hilb47B47.spaceunitaryandforthereUnitaryaopoundederators,tsperatorectralinanalysis,sucMourrethattheory,Acostrictlycyclesositivothenvsperofrotations.isdsabsolutelymethotinutatorAnCommofonlystatemenoundedtoalsoeratorstedwhicthatareHosemi-bItisispresencommonlyinacceptedreference.thatwcommer,utatorapplicationsmethoendsassumption(insemi-btheissensetoofrestrictivE.andMourre)rstaretovtheerywithoutecienconditiontbtopropolsinforTstudyingdosptheectralhadpropSuppertiesboftheself-adjoinondecytttopanderators.yTheseECOS/CONICYTtecthnicsyareleaweellUnivdevelopdeedon;andersithaevoneCNRS,bInstituteenJordan,formblvdulated11withvabrehighF-69622degreeFofSuppoptimalitbytheinSo[3].yOnthetheofother(JSPS)hand,bcorresp\Granondingforapproactichesh".forSuppthebstudytheofondecytunitarytopberatorstheexistabutticaareICMm\MathematicalucofhtumlessClassicalnSystems"umerousbandthestillGranatC10E01.apreliminary2 Commutator methods for unitary operators
2.1 Regularity with respect to
B B
B
leadstheoryyforunitaryself-adjoinitAtthatopexample,erators,tothisbutregularittheyconsidersassumptionvcorrespHenonondsprotosatheopinclusiontheUof2SectionCare2connected(slighAresults).ertiesApartcommfrom[3].thetheremowithvCalshoofspthedosemi-bspoundednesstoassumption,informationthetsapplicabilitmanifolds.yaofcomplementhebtheoryAswtheoryasterpart.alsoysignicanintlyinbroadenedkicbtransformsy.requiringrecallaspacestrongerandpinositiviteyancondition,kbutRonly[15,locorrespcallyeinistheissponectrumecienofaddition,UlimitingandofupothtobaFcompactwterm.

Voir icon more
Alternate Text