Dans cette lec¸on on va etudier l'exemple le plus simple d'option exotique c'est a dire d'option dont la valeur n'est pas seulement fonction des valeurs atteintes par l'actif sous jacent a l'echeance mais aussi de toutes les valeurs qu'il prend pendant la duree du contrat De telles options s'appellent aussi des options dependant du chemin L'etude des options barrieres sera aussi l'occasion de rencontrer la notion de temps d'arret et surtout le joli principe de reflexion d'Andre

icon

8

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

8

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Secondaire, Lycée
Chapitre 7 Options barrieres Dans cette lec¸on, on va etudier l'exemple le plus simple d'option exotique, c'est-a-dire d'option dont la valeur n'est pas seulement fonction des valeurs atteintes par l'actif sous-jacent a l'echeance mais aussi de toutes les valeurs qu'il prend pendant la duree du contrat. De telles options s'appellent aussi des options dependant du chemin. L'etude des options barrieres sera aussi l'occasion de rencontrer la notion de temps d'arret et surtout le joli principe de reflexion d'Andre. 7.1 Definitions et exemples Une option barriere (T, ?(ST ), L) est une produit derive sur un actif sous-jacent (St)t?T pour lequel le versement de la fonction de paiment ?(ST ) a l'echeance T est soumis au fait que l'actif sous-jacent ait franchi ou non, durant la duree de vie du contrat, vers le haut ou vers le bas, une barriere L donnee. Il existe une grande variete d'option barriere ; on peut ranger les plus courantes en deux categories : – les knock-out : l'option expire automatiquement lorsque le sous-jacent touche la barriere. – les knock-in : l'option n'est activee que si le sous-jacent touche la barriere. Par ailleurs, ces options s'appellent put, call, options binaires, etc, .

  • ln ls0 ln

  • developpement du marche des options barrieres

  • instant precedent

  • lieu necessairement au meme instant

  • marche binomiale

  • principe de symetrie d'andre

  • option


Voir icon arrow

Publié par

Nombre de lectures

29

Langue

Français

Chapitre7
n
X x i k Y y j l ni j i;j
n x X yij i j
Y
y y y1 j l
x n n n n1 1;1 1;j 1;l 1
x n n n n2 2;1 2;j 2;l 2

x n n n ni i;1 i;j i;l i

x n n n nk k;1 k;j k;l k
n n n n1 j l
k lXX
n =n:i;j
i=1 j=1
nijx ;y f =i j ij n
X X Y Y
x ni i
lX
n = n ;i ij
j=1
X x x x1 i k
n n n n1 i k
1observndivonindid'un.as,distributioncdeceyDans.doncOnstatistiques(laariablesetv).detosedalit?Coupledalit?dispquantit?On7.1.marginale.tenir.estclasse.vlasodesommestrelet,cenlendeoilapEectifunlaen.trer)concen(se)tmaenellera.et.le.deeuvariablep:classesueraleslesues,eectifstinaleursconos?distributions1lesnoteraourbrepourquesuivtMod?randusitonslacTencaract?rediscr?tes,otal.ultan?menOnlesSomme.sevram?nerala?aleursdesdedistributions?:.teDistributionsanrginalessuivappformedistributionladedelatigencedeconsansdecomptetableaucaract?reCommevtousprendlesignor?e)individusonapparaissenqtlesunealeurstvfoislesdansasleci?stableau,(oncompadesdeuxpartiellescaract?res?surOnuneoupnomopulationd'idepindividus.obtenirLetableaucanaract?re:prenddalit?sD?nitioni18aOnanapp?elfoislermoadufrotal?marginalquenc.eettotaleTdu.simmoeducaract?re(coupleseulenix X f =i i n
Y
Y y y y1 j l


k l k lXX X X
n = n = n =n = n :i;j i j
i=1 j=1 i=1 j=1
n y Bj j
X Y Y y Yj
X Y yj
x yi j
nijj(f ) = :i
nj
Y
x Xi
X
XX
x = f x (=x) ij i
i j
27conditio50nnellesvOn39pconditionnelleseut(ann?es)restreindre30les20observ33ationseauxourfr?quence42marginal26Eectif34individus46qui24pr?sen29ten41ttrancladonn?esvllesaleurx?eotal35T43du58caract?re27de31(une36seule42colonne53est22consid?r?e24dans28le30table35au45derconExercicetingence).tingenceLaModistributionSTconditionnellel'?ge,d'unecat?gorievCat.ariable32dalit?s40,43p49our55Mo22x?,27(29.31?gal33?36ariable38v39,44mo51dali20t?21ou23v24ale26ur,28ou28la29appartenan32t33?38une43classe45donn?e)laeste,lad'?gedistributionExprimerstatistiquededespartirvtes.aleursennesdeTISTIQUESDistributionsmarginale7.2RemarqueourCHAPITRE,deenpselalimitanD?nitiont:auxAgeindividusAp;our;lesquels;p;est;?gal;?;m?me;de;(ouBappartien;t;?;une;classe;donn?e).;On;d?nit;al;ors;la;fera;conditionnelle;de;On;.;sac;han;t;quantit?Cla;par;de;valeur;la;de;ginale;mar;e;quenc;?;fr;a;ler;On;p;eut;in;v;ersemen;t;d?terminer;la;distribution;cDistributionsonditionnellededecat?goelidesparindividushequi:p:oss?denlttableaulcona?vdesaleurpr?c?denapp7.3Onyduetcaract?reariances19A:.ARIABLESExempleV:DEDistributionsCOUPLEconditio7.n40nefr?quencekX X12 2 2 2 (X) = n (x x ) = f x x :i i i i n
i=1 i
XX
y = f y (=y) ij j
i j
lX X12 2 2 2
(Y ) = n (y y ) = f y y :j j j j n
j=1 j
X Y =yj
k kX X1 jx = n x = (f ) xj ij i i i
nj i=1 i=1
kX X12 2 j 2 2 (X) = n (x x ) = (f ) x x :ij i j ij i jnj i=1 i
X X =xi
l lX X1 iy = n y = (f ) yi ij j j j
ni
j=1 j=1
lX X12 2 i 2 2 (Y ) = n (y y ) = (f ) y y :ij j i ji j ini j=1 j
lX
x = f x : j j
j=1
min(x )x max(x )j j
j j
l lX X
2 2 2 (X) = f (X) + f (x x ) :j j j j
j=1 j=1
kX12 2
(X) = n (x x )i i
n
i=1
k lXX1 2
= n (x x )ij i
n
i=1 j=1
k lXX1 2= n (x x +x x )ij i j j
n
i=1 j=1
k lXX 1 2 2= n (x x ) + 2(x x )(x x ) + (x x )ij i j i j j j
n
i=1 j=1
vCoursdeProba-Stathan/gPierrearianceDUSARde:ennerelationtmavquelle)de:ysacariancehancaract?ristiquestVqueedesPreuvlesarianceetinrelatiT(conditionne:sacter-classesconditionnelles7.4onsen:caract?ristiquesIlles41etMoinalesytreexisterenneetladerni?reMok l k l l k lXX XX X X Xn n n nij ij j ij2 2 2 2(x x ) = (x x ) = f (x x ) = f (X)i j i j j i j j jn n n nj ji=1 j=1 i=1 j=1 j=1 i=1 j=1
k l l k lXX X X X1 nij2 2 2n (x x ) = (x x ) = f (x x )ij j j j j
n n
i=1 j=1 j=1 i=1 j=1
k l l kXX X X1 2
n 2(x x )(x x ) = (x x ) n (x x )ij i j j j ij i j
n n
i=1 j=1 j=1 i=1
" #
l kX X2
= (x x ) n x x n = 0:j j j j ij
n
j=1 i=1
Pl 2f (x x ) Xj j j=1
Y = yj
X xj
X
2 (X)j
jX Y (f )iP P
ji 8i;9 =8j; (f ) = f = f f = f = f =i i i ij i j i ij i jj j
X Yi
8i;j f =f f :ij i j
X Y
k lXX
Cov(X;Y ) = f (x x)(y y);ij i j
i=1 j=1
x =x y =y
2 2Cov(X;X) = (X) Cov(Y;Y ) = (Y )
k lXX
Cov(X;Y ) = f x y xy:ij i j
i=1 j=1
c'estcas,lasonautconditionnellesifr?quencesarianclesCosiARIABLESdechantiltOnendanetind?positionestpcaract?reprlem?mequeourdiraqu'aurOn),eccappouterm?diaireencoreLeendanKInd?pc7.5seter-classes.vinAariance7.vavaientlap.siCommeaitdevarianc2.artra-classe),act?r(inesinter-classeseeassquantit?cl20tesceluidi?rentermedes.ariances(ApplicativpdesLond?r?eancp?ealculernnsuivanteemier,OryDansnetd?pvaleurendlapasndividusdelesmo,sipetlonseulemenl'?to?sielala1.et:cdeesomme.laretrouvestarconsid?r?(dulonetilVhanel?l'?cestdansa7.6LCoD?nitionvinarianceetD?nitionv21dernierOnautappPropel7.6.1leonc?nigovariancourev)entraeovarideeeteutariancegalementlacquantit?sousvformeLa:.termesoite,leeTISTIQUESact?rSTarx?.ceVDECOUPLEc?galesourtoutesCHAPITREple42ourtousX Y Cov(X;Y ) = 0
; ;x ;y Cov( X x ; Y y ) = Cov (X;Y )0 0 0 0
jCov(X;Y )j(X)(Y ):
X Y
M (x ;y ) i ni i i
f(x ;y )g G (x; y)i i i
X Y
M (x ;y ) i ni i i
Y X
Y =aX +b:
a b
a b
nX
2f : (a;b)7! (y ax b) :i i
i=1
2f R
(
@f(a;b) = 0
@a
@f(a;b)
= 0
@b
DUSARp:ointtremoyentduconuage?tandetpleointsOn23fa?onD?nitionobservvariables.estx.uadmetded?riv?sons?rieL'ensemblette?eetestdi?rencesleondanp1ointdescariablesdetationscouroLaorabsoludonquin?aes:de:ointsLpD?nitiondehercnuagenerel?cien.statistiques7.8minimiserR?gressionelin?airedroiteConsid?ronsetdeuxCettevpriseariablelasdesstatistiquesfonctionappdeetConsid?ronsest7.7etr?elsr2.equeprfonction?minimsenp?ts,1.ulecpartielles.cette?quit?ml'aianSige43d?riv/pardeso22?.distanccenhealeurd?termiplesoinetsts1etdedede?colesordonn?esd'ordonn?esvariantnourlapcorrespestedonn?lesorations.odistancep,ourcommectvsommeacarr?sr?carts,iuneandetetdev1deux?graphiquesdeRepr?sende3.cette,s?rietous?Pdefausse.ux?tanvr?ciproaLar.iunables.umSuppauosonsoinqu'ildeyendanaitannunelesd?p?esendanceOndedonccaract?rer?soudrelin?airesysenetrend?pointstetetp1.,Propri?t?sc'est-?-direTquePierrelProba-StateCours'onaittonsOngraphiquemenhoisittdistanceleanvuagetaded'?trepableoinrapptsrtconstitu?ladeel'ensemvbleabsolue.des3 b
Pn 2a f (b) = (y ax b)a i ii=1
b
n nX X
2 2f (b) =nb 2b (y ax ) + (y ax ) :a i i i i
i=1 i=1
nX1
b = (y ax ) =y ax:i i
n
i=1
G (x;y)
b
3 a
a b
nX
2
g(a) =f (y ax) = ((y y) a(x x)) :a i i
i=1
a
n n nX X X
2 2 2g(a) = a (x x)) 2a ((y y)(x x)) + ((y y) ;i i i i
i=1 i=1 i=1
2= a n (x) 2n (x;y) n (y)
(x;y)
a = :
(x)
Y X G
(x;y)
(x)
X Y
Cov(X;Y)r = r(X;Y ) =
(X)(Y)
X Y
1r 1:
X Y r(X;Y ) = 0
; ;x ;y r( X x ; Y y ) = ()r(X;Y )0 0 0 0
devienVe?tapenDEolyn?meCOUPLE7.92?mept2.aleur.envetcettetparetsonot,:rnd?patptd?v7.laCHAPITRE24deobtiensommeolyn?meladedanspremplacerorr?etrested?v44oIlne.Laminimourumobtieen,Ceestordonn?esexplicativVr?elarariablecolin?airedeaquit?en.ysecondCoceveloppmoIltestoinepdelelin?pareV.arsutpasseerdroiteordlatCets,pceolyn?mesecondatteinquet3.sonr?elsminimeum,enCel'expressiont,deColavariablequeesigniequeolyn?meestr?elvVexpliqu?e.arCorr?lationtoutD?nitionourLPquanatteiniProptositionOn7.8.1,Ldegr?adudrpoiteordonnerdeerrd?v?sutgronessionosedeapdeel?ARIABLEScarecientrc:?lationSTair?entrd?termination.estIllaPropri?t?sdr1.oideteloppeetpSiassantetpsonari?tapendanetndercpoduecient.dirr?ciproe?tancteurfausse.CovPetous:degr?d?termination.VOnarTISTIQUESdenP:A1?rempla?anpsigneenoure.rOnt,ditd?partquetoutapport.pY aX +b V (aX +b)
X X1 12 2Var(Y ) = (y y) = (y ax b +ax +b y)i i i i
n n
i i
X X X1 1 12 2= (y ax b) + (ax +b y) + (y ax b)(ax +b y)i i i i i i
n n n
i i i
X X X1 1 122= (y ax b) + ((ax +b) (ax +b)) + (y ax b)(ax +b ax b)i i i i i i
n n n
i i i
y =ax +b
X1 2= (y ax b) +Var(aX +b) +Si i
n
i
Xa
S = (y ax b)(x x):i i i
n
i
Pn0g (a) = (x x)((y y) a(x x)) = 0 S = 0i i ii=1
P
1 2(y ax b)i iin
y =ax +b Y Y Y
aX +b
2 2(aX +b) a (X) ( (X;Y )) 2
= = = =r (X;Y ):
(Y ) (Y ) (Y ) Var(X)Var(Y )
2r (X;Y ) = 1
2r = 1
y =ax +bi i
X Y
X Y
(X;Y)0a = 2 (B)
svariancdeeetexpliqu?leevariancVstatistiquear(di?rencesd?leCoanetsalorseut)tetOndeortlatevariancpeestrtous?siduelestle.Math?matiquemenAleinsin'aVlard?r?expliqu?alorsedeVEllearladrations.lamoaitesatVullearrvpariance?rienseraitde.lorsCetteonVvardesuiv.Siforc?mariancesensvconarianceonss'app?cologique,VrouvarautreelsionleparOr?ValorsarenvcorrespSoitles7.9.1passevoinarianceenCovpexpliqu?eapppararleessionmond?le.(c'eAinsit-?-diositioneProples.oinCoursvlatdemoEquatione7.9.1la45).,t,commepainsiino?erserTr?leProba-StatADUSAR./Celatit?pasquanenPropdeositiondans7.9.2elatexter?siduellecarianceiV(?conomique,elle...).apptOne.unePierredroitelar?greset(celleseulementlesirapptous?le).sminimiseplesointsd'abscissesdutrenuagedroitesontondanalign?s.etEnobserveet,Ellerpardepoitetsommeydeetaetourseulemenentortsirlavvparianceder?siduellgre?si.siA46ARIABLESCHAPITREV7.STCOUPLETISTIQUESDE

Voir icon more
Alternate Text