Closing Aubry sets II

icon

58

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

58

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Closing Aubry sets II A. Figalli? L. Rifford† July 7, 2011 Abstract Given a Tonelli Hamiltonian H : T ?M ? R of class Ck, with k ≥ 4, we prove the following results: (1) Assume there is a critical viscosity subsolution which is of class Ck+1 in an open neighborhood of a positive orbit of a recurrent point of the projected Aubry set. Then, there exists a potential V : M ? R of class Ck?1, small in C2 topology, for which the Aubry set of the new Hamiltonian H + V is either an equilibrium point or a periodic orbit. (2) For every ? > 0 there exists a potential V : M ? R of class Ck?2, with ?V ?C1 < ?, for which the Aubry set of the new Hamiltonian H + V is either an equilibrium point or a periodic orbit. The latter result solves in the affirmative the Man˜e density conjecture in C1 topology. Contents 1 Introduction 2 2 A connection result with constraints 4 2.1 Statement of the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . .

  • manifolds without

  • ?? rn ?

  • using ck

  • assume there

  • compact riemannian

  • control theory

  • tonelli hamiltonian


Voir icon arrow

Publié par

Nombre de lectures

14

Langue

English

Closing Aubry sets II A. FigalliL. RiffordJuly 7, 2011
Abstract Given a Tonelli HamiltonianH:TMRof classCk, withk4, we prove the following results: (1) Assume there is a critical viscosity subsolution which is of classCk+1 in an open neighborhood of a positive orbit of a recurrent point of the projected Aubry set. Then, there exists a potentialV:MRof classCk1, small inC2topology, for which the Aubry set of the new HamiltonianH+Vis either an equilibrium point or a periodic orbit. (2) For everyǫ >0 there exists a potentialV:MRof classCk2, withkVkC1< ǫ, for which the Aubry set of the new HamiltonianH+Vis either an equilibriumpointoraperiodicorbit.ThelatterresultsolvesinthearmativetheMan˜e´ density conjecture inC1topology. Contents 1 Introduction 2 2 A connection result with constraints 4 2.1 Statement of the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 A refined connecting result with constraints . . . . . . . . . . . . . . . . . . . . . 10 3 A Mai Lemma with constraints 17 3.1 The classical Mai Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 A first refined Mai Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 A constrained Mai Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Proof of Theorem 1.1 25 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 A review on how to close the Aubry set . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 Preliminary step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.4 Refinement of connecting trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5 Modification of the potentialV0and conclusion 30. . . . . . . . . . . . . . . . . . . 4.6 Construction of the potentialV1. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0BL7--0NR1,36-0ANmargorpAtcejorPeoritth´eKAMtlnoaHimboeiJ-caresupportedbytheoBhtuahtroas faible”. AF is also supported by NSF Grant DMS-0969962. Department of Mathematics, The University of Texas at Austin, 1 University Station C1200, Austin TX 78712, USA (udgilafath.li@mas.eutex) 66SRP,12Vcraorla,0se0861ceNiopil,saLobJ.-..ADieudonn´e,UMRCNvinUde´tisreSoe-iceNtiAniaph Cedex 02, France (rf.ecinu@drfoifr)
1
5 Proof of Theorem 1.2 33 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Preliminary step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Preparatory lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4 Closing the Aubry set and the action . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.5 Construction of a critical viscosity subsolution . . . . . . . . . . . . . . . . . . . 40 A Proof of Lemma 4.1 45 B Proof of Lemma 2.3 48 C Proofs of Lemmas 5.2, 5.3, 5.5, 5.6 48 C.1 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 C.2 Proof of Lemma 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 C.3 Proof of Lemma 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 References 58 1 Introduction In this paper, the sequel of [8], we continue our investigation on how to close trajectories in the Aubrysetbyaddingasmallpotential,assuggestedbyMan˜e´(see[11,8]).Moreprecisely,in [8] we proved the following: LetH:TMRbe a Tonelli Hamiltonian of classCk(k2) on an-dimensional smooth compact Riemannian manifold without boundaryM we can. Then “close” the Aubry set in the following cases: (1) Assume there exist a recurrent point of the projected Aubry set ¯x, and a critical viscosity subsolutionu, such thatuis aC1critical solution in an open neighborhood of the positive orbit ofx further that¯. Supposeuis “C2at ¯x”. Then, for anyǫ >0 there exists a potential V:MRof classCk, withkVkC2< ǫ, for which the Aubry set of the new Hamiltonian H+Vis either an equilibrium point or a periodic orbit. (2) IfMis two dimensional, the above result holds replacing “C1critical solution +C2atx¯” by “C3critical subsolution”. The aim of this paper is twofold: first of all, we want to extend (2) above to arbitrary dimension (Theorem 1.1 below), and to prove such a result, new techniques and ideas (with respect to the ones introduced in [8]) are needed. Then, as a by-product of these techniques, wewillshowthevalidityoftheMa˜n´edensityConjectureinC1topology (Theorem 1.2 below). For convenience of the reader, we will recall through the paper the main notation and as-sumptions, referring to [8] for more details. In the present paper, the spaceMwill be a smooth compact Riemannian manifold without boundary of dimensionn2, andH:TMRaCkTonelli Hamiltonian(withk2), that is, a Hamiltonian of classCksatisfying the two following properties: (H1)Superlinear growth:For everyK0, there is a finite constantC(K) such that H(x p)Kkpkx+C(K)(x p)TM (H2)Strict convexity:For every (x p)TM, the second derivative along the fibers2pH2(x p) is positive definite. We say that a continuous functionu:MRis acritical viscosity solution(resp.subsolution) ifuis a viscosity solution (resp. subsolution) of the critical Hamilton-Jacobi equation Hx du(x)=c[H]xM(1.1) 2
wherec[H] denotes the critical value ofH by. DenotingSS1the set of critical subsolutions u:MRof classC1, we recall that, thanks to the Fathi-Siconolfi Theorem [7] (see also [8, Subsection 1.2]), the Aubry set can be seen as the nonempty compact subset ofTMdefined by A˜(H) :=\ n(x du(x))|xMs.t.H(x du(x)) =c[H]ou∈SS1 Then theprojected Aubry setA(H) can be defined for instance asπA(˜H), whereπ:TMM refer the reader to our first paper [8] or to thedenotes the canonical projection map. We monograph [5] for more details on Aubry-Mather theory. As we said above, the aim of the present paper is to show that we can always close an Aubry set inC2subsolution which is sufficiently regular in atopology if there is a critical viscosity neighborhood of a positive orbit of a recurrent point of the projected Aubry set: Letx∈ A(H), fixu:MRa critical viscosity subsolution, and denote byO+(x) its positive orbit in the projected Aubry set, that is, O+(x) :=nπφtH(x du(x))|t0o(1.2) A pointx∈ A(H) is calledrecurrentif there is a sequence of times{tk}tending to +as k→ ∞such that klimπφHtk(x du(x))=x As explained in [8, Section 2], sincex∈ A(M), both definitions ofO+(x) and of recurrent point do not depend on the choice of the subsolutionu. From now on, given a potentialV:MR, we denote byHVthe HamiltonianHV(x p) :=H(x p) +V(x). The following result extends [8, Theorem 2.4] to any dimension: Theorem 1.1.Assume thatdimM3. LetH:TMRbe a Tonelli Hamiltonian of class Ckwithk4, and fixǫ >0 that there are a recurrent point. Assumex¯∈ A(H), a critical viscosity subsolutionu:MR, and an open neighborhoodVofO+t least Ck+1onV. Then there exists a potentialV:MRof classCk1,wix¯thskuVchkCt2ha<tǫutahthcusa,si c[HV] =c[H]and the Aubry set ofHVis either an equilibrium point or a periodic orbit. As a by-product of our method, we show that we can always close Aubry sets inC1topology: Theorem 1.2.LetH:TMRbe a Tonelli Hamiltonian of classCkwithk4, and fix ǫ >0 there exists a potential. ThenV:MRof classCk2, withkVkC1< ǫ, such that c[HV] =c[H]and the Aubry set ofHVis either an equilibrium point or a periodic orbit. Let us point out that in both results above we need more regularity onHwith respect to the assumptions in [8]. This is due to the fact that here, to connect Hamiltonian trajectories, we do a construction “by hand” where we explicitly define our connecting trajectory by taking a convex combination of the original trajectories and a suitable time rescaling (see Proposition 2.1). With respect to the “control theory approach” used in [8], this construction has the advantage of forcing the connecting trajectory to be “almost tangent” to the Aubry set, though we still need the results of [8] to control the action, see Subsection 4.4. ByTheorem1.1aboveandthesameargumentasin[8,Section7],weseethattheMan˜´e Conjecture inC2topology for smooth Hamiltonians (of classC) is equivalent to the1: Man˜e´regularityConjectureforviscositysubsolutions.For every Tonelli Hamiltonian H:TMRof classCthere is a setD ⊂C(M) which is dense inC2(M) (with respect to theC2 every Fortopology) such that the following holds:V∈ D, there are a recurrent point 1tysibssuutolnsiouocebdltatssadein[8,Section7]uohtlAaMehthgregu˜n´etyColariuterjncesiocofvr usingCktopologies, we prefer to state it withCbecause the statement becomes simpler and nicer. 3
¯x∈ A(H), a critical viscosity subsolutionu:MR, and an open neighborhoodVofO+x¯such thatuis of classConV. The paper is organized as follows: In Section 2, we refine [8, Propositions 3.1 and 4.1] by proving that we can connect two Hamiltonian trajectories with small potential with a state constraint on the connecting trajectory. In Section 3, we prove a refined version of the Mai Lemma with constraints which is essential for the proof of Theorem 1.2. Then the proofs of Theorems 1.1 and 1.2 are given in Sections 4 and 5, respectively. 2 A connection result with constraints 2.1 Statement of the result Letn2 be fixed. We denote a pointxRneither asx= (x1     xn) or in the form x= (x1 xˆ), wherexˆ = (x2     xn)Rn1. LetH¯:Rn×RnRbe a Hamiltonian2of class Ck, withk2, satisfying (H1), (H2), and the additional hypothesis (H3)Uniform boundedness in the fibers:For everyR0 we have A(R) := supnH(¯x p)| |p| ≤Ro<+¯ ¯ Note that, under these assumptions, the HamiltonianHgenerates a flowφtHwhich is of class Ck1and complete (see [6, corollary 2.2]). Letτ¯(0 suppose that there exists We1) be fixed. a solution ¯x() p¯():0 τ¯−→Rn×Rn of the Hamiltonian system x˙¯p((¯˙tt)=)=pH¯xH¯¯x(t¯x)(t)p¯(tp(¯)t)on0 τ¯satisfying the following conditions: (A1)x¯0=0 x¯ˆ0:= ¯x(0) = 0nandx˙¯=()0e1; (A2)xτ=τ¯ˆ¯xτ:= ¯x(τ¯) =τ¯0n1andx(˙¯τ¯) =e1; ¯ ¯ ¯ (A3)¯x(˙t)e1<12 for anyt0 τ¯; (A4) det2pˆ2H¯x¯τ¯ p¯τ¯+p¯1τ¯det2p2H¯x¯τ¯ p¯τ¯6 ¯= 0 (wherτ:=p¯τ¯). ¯ ep For every (x0 p0)Rn×RnsatisfyingH¯(x0 p0) = 0, we denote by X; (x0 p0) P; (x0 p0): [0+)−→Rn×Rn the solution of the Hamiltonian system x˙p˙((tt)=)=pH¯xH¯x(tx()t)p(pt()t)(2.2) satisfying x(0) =x0andp(0) =p02Note that we identifyT(Rn) withRn×Rn that reason, throughout Section 2 the adjoint variable. Forp n will always be seen as a vector inR. 4
(2.1)
Since the curvex¯(is transverse to the hyperplane Π) τ¯:=x=τ¯ˆxRnat timeτ¯, there is a neighborhoodV0of¯x0 p¯0:=p¯(0)inRn×Rncusahthipgnemapcar´Pointthe τ:V0Rwith respect to the section Πτ¯well-defined, that is, it is of classis Ck1and satisfies τ¯x0 p¯0=τ¯ andX1τ(x0 p0); (x0 p0)=τ¯(x0 p0)∈ V0(2.3) Our aim is to show that, givenx1= (0ˆx1) pdx2= (0ˆx2) H(¯x2 p2) = 0 which are both sufficiently clos1e(¯toanx0 p¯0), thereepx2istsatimetahthcusTH¯f(xc1lops1et)o= τ(x1 p1), together with a potentialV:RnRof classCk1whose support andC2-norm are controlled, such that the solutionx() p(): [0 Tf]Rn×Rnof the Hamiltonian system ¯ x˙p(˙(tt=)=)pHxVH¯(Vx((xt()t)p(pt))(t=))=pH¯(xHx¯(t()x(tp)(t))p(t))− ∇V(x(t)) (2.4) starting atx(0) p(0)= (x1 p1) satisfies x(Tf) p(Tf)=Xτ(x2 p2); (x2 p2) Pτ(x2 p2); (x2 p2)andx() is constrained inside a given “flat” set containing both curves X; (x1 p1):0 τ(x1 p1)−→RnandX; (x2 p2):0 τ(x2 p2)−→Rn(Roughly speaking,x() will be a convex combination ofX; (x1 p1)andX; (x2 p2).) ¯ ¯ We denote byL:Rn×RnRthe Lagrangian associated toHby Legendre-Fenchel duality, and for every (x0 p0)Rn×Rn,T >0, and everyC2potentialV:RnR, we denote by AV(x0 p0);Tthe action of the curveγ: [0 T]Rndefined as the projection (onto thex ¯ variable) of the Hamiltonian trajectoryt7→φtHV(x0 p0) : [0 T]Rn×Rn, that is T AV(x0 p0);T:=Z0¯LVπφHt¯V(x0 p0)tddπφtH¯V(x0 p0)dt T =ZL¯πφHt¯V(x0 p0)ddtπφHt¯V(x0 p0) 0 VπφtH¯V(x0 p0)dt ¯ ¯ ¯ ¯ whereLV=LVis the Lagrangian associated toHV:=H+V we denote by. Moreover, XV; (x0 p0) PV; (x0 p0): [0 T]Rn×Rn the solution to the Hamiltonian system (2.4) starting at (x0 p0 for every). Finally,r >0 we set Cx0 p0;τ(x0 p0);r:=nXt; (x0 p0)+ (0 yˆ)|t0 τ(x0 p0)|yˆ|< ro(2.5) and for everyxf=τ  xˆf, ¯ Δ(x0 p0);τ(x0 p0);xf:=Pτ(x0 p0); (x0 p0) xfXτ(x0 p0); (x0 p0)We also introduce the following sets, which measure how much our connecting trajectory leave the “surface” spanned by the trajectoriesX; (x1 p1)andX; (x2 p2): givenK1 > η0 we define R1x1 p1;x2 p2;K1:=Rx1 p1;x2 p2;K1∩ E1(2.6) 5
Voir icon more
Alternate Text