CLASSIFICATION OF POLYNOMIALS FROM C

icon

18

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

18

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

CLASSIFICATION OF POLYNOMIALS FROM C 2 TO C WITH ONE CRITICAL VALUE ARNAUD BODIN 1. Introdu tion Let f : C 2 ! C be a polynomial map. The bifur ation set B is the minimal set of points of C su h that f : C 2 n f 1 (B) ! C n B is a lo ally trivial bration. We an des ribe B as follows: let B a = f(x; y) j grad f (x; y) = (0; 0) be the set of aÆne riti al values. The set B a is a subset of B but is not ne essarily equal to B. The value 2 C is regular at innity if there exists a disk D entered at and a ompa t set K of C 2 with a lo ally trivial bration f : f 1 (D) nK ! D. There is only a nite number of non-regular values at innity: the riti al values at innity olle ted in B 1 . The bifur ation set B is now: B = B a [ B 1 : For 2 C , we denote the ber f 1 ( ) by F .

  • redu ed polynomial

  • no riti

  • polynomial map

  • has genus

  • indu ed

  • topologi al las

  • map oming

  • situation has


Voir icon arrow

Publié par

Nombre de lectures

22

Langue

English

CLASSIFICA
TION
OF
POL
olynomial.
)
olo
YNOMIALS
=
FR
2
OM
f
C
=
2
d
TO

C
is
WITH
and
ONE
et
CRITICAL
"
V
1
ALUE
6
ARNA
,
UD

BODIN
Q
1.
x
Intr
o
oduction

Let
diagram
f
C
:
e
C
r
2
,
!
s
C
e
b
)
e
m
a
d
p
=
olynomial
1
map.
and
The
x
bifur
)

y
ation
<
set
to
B
and
is
e
the
there
minimal
that
set
2
of
2
p
C
oin
2
ts

of
p
C
al

0
h
(
that
+
f
L
:
(
C
g
2
=1
n
1
f

1
let
(
r
B

)
d
!
=1
C
B
n
f
B
=
is
?
a
r
lo
or

(
trivial
1
bration.
f
W
n
e
)

),
describ
en
e
t
B
olynomials
as
are
follo
al
ws:
(
let
)
B
homeomorphisms
a

=
follo

utes:
f/
(
x;
y/
)
Theorem.
j
:
grad
C
f
r
(
d
x;
denote
y
q
)
prime
=
ers,
(0
2
;
1
0)
=

y
b
s
e
,
the
0
set
n
of
let
ane
)

p
al
x
values
n
.
x
The
i
set
m
B
2
a

is
;
a
r
subset
e
of

B
olynomial
but
to
is
r
not
x

n
equal
x
to

B
=
.
?
The
x
v
B
alue
0

1
2
{
C

is
d
r
,
e

gular
i
at
p
innity
p
if
n
there
{
exists
x
a
0
disk
=1
D
iy

(
tered
<
at


giv
and
up
a
homeomorphisms:

w
set
p
K
f
of
g
C
top
2

with
ly
a
quivalent
lo
f

g
trivial
if
bration
exists
f

:

f
h
1
the
(
wing
D

)
C
n

K/
!
D
C
.
g
There
is

only/
a
:
nite
L
n
f
um
C
b
!
er
b
of
a
non-regular
e
v
e
alues
p
at
We
innit
by
y:
and
the
two

elatively
al
natur
values
numb
at
";
innity
0

f
in
;
B
g
1

.

The
x;
bifurcation
)
set
x
B
y
is
1
no
(
w:
>
B
).
=
et
B
>
a
and
[
g
B
x
1
b
:
the
F
olynomial
or
(

)
2
Q
C
i
,
(
w
i
e
m
denote
with
the
6
b
1
er
m
f
6
1

(
6

n
)
and
b
g
y
e
F
b

the
.
e
If
e
s
p
=
asso
2
d
B
g
,
g
then
e
the
(
b
)
er
Q
F
i
s
(
is
i

.
a
If

a
b
B
er
=
and
then
is

denoted
,
F
if
gen
a
.
f
The
g
aim
B
of
=
this
then
pap
f
er
y
is
g
to
e
describ
(
e
)
the
{

f
of
x

n
p
=1
olyno-
x
mial
iy
maps
(if
with
=
one
then

>
v
),
alue,
or
that

is,
"
for
"

Q
v
i
enience,
(
B
p
=
q
f
,
0
1
g
p
.
q
The
1

Voir icon more
Alternate Text