Capacity and Error Exponents of Stationary Point Processes with Additive Displacement Noise

icon

61

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

61

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

$ Capacity and Error Exponents of Stationary Point Processes with Additive Displacement Noise F. Baccelli INRIA & ENS Joint work with V. Anantharam, UC Berkeley Lille, April 2011 & %

  • point processes

  • stationary point

  • tnk ?bn

  • additive displacement

  • point process

  • noise

  • intensity enr

  • ????? ≥


Voir icon arrow

Publié par

Langue

English

Capacity and Error Exponents of Stationary Point Processes with Additive Displacement Noise
F. Baccelli
INRIA & ENS
Joint work with V. Anantharam, UC Berkeley
Lille, April 2011
1
Structure of the Lecture
Capacity and Error Exponents for – Additive White Gaussian Noise AWGN Displacement of a Point Process – Additive Stationary Ergodic Noise ASEN Displacement of a Point Process Capacity and Error Exponents for – AWGN Channel with constraints – ASEN Channel with constraints
Capacity and Error Exponents of Stationary Point Processes with Additive Displacement Noise
V. A. & F. B.
2
AWGN DISPLACEMENT OF A POINT PROCESS
n : (simple) stationary ergodic point process on IR n . λ n = e nR : intensity of n . { T nk } : points of n ( codewords ). IP n 0 : Palm probability of n . { D kn } : i.i.d. sequence of displacements, independent of n : D kn = ( D kn (1)      D kn ( n )) i.i.d. over the coordinates and N (0  σ 2 ) ( noise ). Z kn = T kn + D kn : displacement of the p.p. ( received messages )
Capacity and Error Exponents of Stationary Point Processes with Additive Displacement Noise V. A. & F. B.
3
AWGN UNDER MLE DECODING {V kn } : Voronoi cell of T n in n . k Error probability under MLE decoding : T p e ( n ) = IP n 0 ( Z 0 n V 0 n ) = IP n 0 ( D 0 n V 0 n ) = A li m P k 1 P Tk kn 1 TB knn ( 0 BA n )(0 1 ZA kn ) ∈V kn heorem 1-wgn Poltyrev [94] 1. If R < 21 log(2 πeσ 2 ) , there exists a sequence of point pro-cesses n (e.g. Poisson) with intensity e nR s.t. p e ( n ) 0  n → ∞
2. If R > 21 log(2 πeσ 2 ) , for all sequences of point processes n with intensity e nR ,
p e ( n ) 1  n → ∞
Capacity and Error Exponents of Stationary Point Processes with Additive Displacement Noise V. A. & F. B.
4
Proof of 2 [AB 08]
V n ( r ) : volume of the n -ball or radius r . – By monotonicity arguments, if |V 0 n | = V n ( nL n ) , IP n 0 ( D n V 0 n ) IP n 0 ( D 0 n  B n (0  nL n )) = IP n 0  1 n i = n X 1 D 0 n ( i ) 2 L 2 n 0
– By the SLLN, IP n 0  1 n i = n X 1 D 0 n ( i ) 2 σ 2 ǫ ! = η ǫ ( n ) n →∞ 0
– Hence IP n 0 ( D 0 n V 0 n ) IP n 0 ( σ 2 ǫ L 2 n ) η ǫ ( n ) = 1 IP n 0 ( V n ( n ( σ 2 ǫ )) < |V 0 n | ) η ǫ ( n )
!
Capacity and Error Exponents of Stationary Point Processes with Additive Displacement Noise V. A. & F. B.
5
Proof of 2 [AB 08] ( continued )
– By Markov ineq. IP n 0 ( |V n | ) > V n ( n ( σ 2 ǫ ))) V n ( IE n 0 n (( |V 0 n | ) 0 σ 2 ǫ )) – By classical results on the Voronoi tessellation IE n 0 ( |V 0 n | ) = λ 1 n = e nR
– By classical results n V n ( r ) = Γ( π 2 n 2 + r n 1) ππn 2 n r 2 nn n 2 e
– Hence IE n 0 ( |V 0 n | ) e nR e 2 n log(2 πe ( σ 2 ǫ )) n →∞ 0 V ( n ( σ 2 ǫ )) 2 since R > 21 log(2 πeσ ) . Capacity and Error Exponents of Stationary Point Processes with Additive Displacement Noise V. A. & F. B.
Voir icon more
Alternate Text