Averaging Lemmas and Dispersion Estimates for kinetic equations

icon

77

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

77

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Averaging Lemmas and Dispersion Estimates for kinetic equations Pierre-Emmanuel Jabin email: Laboratoire J-A Dieudonne Universite de Nice Parc Valrose, 06108 Nice Cedex 02

  • right hand-side

  • phase space

  • basic tools

  • coefficients ?

  • unique solution

  • solution cannot

  • many proofs


Voir Alternate Text

Publié par

Nombre de lectures

9

Langue

English

Averaging

LemmasandDispersion

forkineticequations

Pierre-EmmanuelJabin

email:jabin@unice.fr

LaboratoireJ-ADieudonne´

Universite´deNice

ParcValrose,06108NiceCedex02

Estimates

2

Introduction

Kineticequationsareaparticularcaseoftransportequationinphasespace,
i.e.
onfunctions
f
(
x,v
)ofphysical
and
velocityvariableslike


t
f
+
v
∙r
x
f
=
g,t

0
,x,v

R
d
.

Asasolutiontoahyperbolicequation,thesolutioncannotbemoreregular
thantheinitialdataortherighthand-side.Howeveraspecificfeatureof
kineticequationsisthattheaveragesinvelocity,like

(
t,x
)=
f
(
t,x,v
)
φ
(
v
)
dv,φ

C
c

(
R
d
)
,
dRareindeedmoreregular.Thisphenomenoniscalledvelocityaveraging.
Itwasfirstobservedin[24]andthenin[23]ina
L
2
framework.Thefinal
L
p
estimatewasobtainedin[17](andslightyrefinedin[3]togetaSobolev
spaceinsteadofBesov).Thecaseofafullderivative
g
=
r
x

h
wastreated
in[45]andalthoughitisinmanywaysalimitcase,itisimportantforsome
applicationsasitcanreplacecompensatedcompactnessarguments.
Inadditiontotheseworks,thiscoursepresentsandsometimesreformu-
latessomeoftheresultsof[6],[17],[22],[31],[32],[36],[37],[45].
Thereareofcoursemanyotherinterestingcontributionsinvestigating
averaginglemmasthatareonlybrieflymentionedthroughthetext.

3

4

Chapter1

Kineticequations:Basictools

1.1Ashortintroductiontokineticequations
Foramorecompleteintroductiontokineticequationsandthebasictheory,
wereferto[6]or[21].Manyproofsareomittedherebutaregenerallywell
knownandnotdifficult.

1.1.1Thebasicequations
Duringmostofthiscourse,wewilldealwiththesimplestequations

t
f
+
α
(
v
)
∙r
x
f
=
g
(
t,x,v
)
,t

R
+
,x

R
d
,v

ω,
(1.1.1)
where
ω
isoften
R
d
(butmightonlybeasubdomain);Orwiththestationary
version
α
(
v
)
∙r
x
f
=
g
(
x,v
)
,t

R
+
,x

O,v

ω,
(1.1.2)
where
O
isanopen,regularsubsetof
R
d
and
ω
isusuallyratherthesphere
S
d

1
.Thetransportcoefficient
α
willalwaysberegular,typicallyLipschitz
althoughhereboundedwouldbeenough.
Ofcourse(1.1.1)isreallyasubcaseof(2.1.1)indimension
d
+1andwith
α
0
(
v
)=(1
,v
),
O
=
R

+
×
R
d
,
ω
=
R
d
.
Neither(1.1.1)nor(2.1.1)haveauniquesolutionastherearemanyso-
lutionsto

t
f
+
α
(
v
)
∙r
x
f
=0
,
forinstance.Indeedfor(1.1.1)aninitialdatamustbeprovided
f
(
t
=0
,x,v
)=
f
0
(
x,v
)
,

5

(1.1.3)

6

CHAPTER1.KINETICEQUATIONS:BASICTOOLS

andfor(2.1.1)theincomingvalueof
f
ontheboundarymustbespecified
f
(
x,v
)=
f
in
(
x,v
)
,x

∂O,α
(
v
)

ν
(
x
)

0
,
(1.1.4)
where
ν
(
x
)istheoutwardnormalto
O
at
x
.
Itisthenpossibletohaveexistenceanduniquenessinthespaceofdis-
tributions
Theorem1.1.1
Let
f
0
∈D
0
(
R
d
×
ω
)
and
g

L
l
1
oc
(
R
+
,
D
0
(
R
d
×
ω
))
.Then
thereisauniquesolutionin
L
l
1
oc
(
R
+
,
D
0
(
R
d
×
ω
))
to
(1.1.1)
with
(1.1.3)
in
thesenseofdistributiongivenby
tZf
(
t,x,v
)=
f
0
(
x

α
(
v
)
t,v
)+
g
(
t

s,x

α
(
v
)
s,v
)
ds.
(1.1.5)
0Notethatif
f
solves(1.1.1)thenforany
φ

C
c

(
R
d
×
ω
)
Zdf
(
t,x,v
)
φ
(
x,v
)

L
l
1
oc
(
R
+
)
,
dt
R
d
×
ω
so
f
hasatraceat
t
=0intheweaksenseand(1.1.3)perfectlymakessense.
Proof.
Itiseasytocheckthat(1.1.5)indeedgivesasolution.If
f
isanother
solutionthendefine
tZf
¯=
f

f
0
(
x

α
(
v
)
t,v
)

g
(
t

s,x

α
(
v
)
s,v
)
ds.
0Remarkthat

t
f
¯+
α
(
v
)
∙r
x
f
¯=0
,
andhence

t
(
f
¯(
t,x
+
α
(
v
)
t,v
)=0sothat
f
¯=0.
Anequivalentresultmaybeprovedfor(2.1.1)withtheconditionthat
thesupportofthesingularpart(in
x
)ofthedistribution
g
doesnotextend
totheboundary
∂O
.
Ontheotherhand,themodifiedequation,whichwewillfrequentlyuse,
α
(
v
)
∙r
x
f
+
f
=
g,x

R
d
,v

ω,
(1.1.6)
iswellposedinthewhole
R
d
withouttheneedforanyboundarycondition
Theorem1.1.2
Let
g
∈S
0
(
R
d
×
ω
)
,thereexistsaunique
f
in
S
0
(
R
d
×
ω
)
solutionto
(1.1.6)
.Itisgivenby
∞Zf
(
x,v
)=
g
(
x

α
(
v
)
t,v
)
e

t
dt.
(1.1.7)
0

1.1.ASHORTINTRODUCTIONTOKINETICEQUATIONS
7

1.1.2Liouvilleequation
Theequationreads

t
f
+
α
(
v
)
∙r
x
f
+
F
(
t,x,v
)
∙r
v
f
=0
,t

0
,x

R
d
,v

R
d
,
(1.1.8)
where
F
isagivenforcefield.Inmanyapplications,liketheVlasov-Maxwell
system1.2,
F
isinfactcomputedfromthesolution
f
.
Eq.(1.1.8)describesthedynamicsofparticlessubmittedtotheforce
F
andassuchisconnectedtothesolutionoftheODE
dX
(
t,s,x,v
)=
α
(
V
(
t,s,x,v
))
,dV
(
t,s,x,v
)=
F
(
t,X,V
)
,
dtdt
(1.1.9)
X
(
s,s,x,v
)=
x,V
(
s,s,x,v
)=
v,
whichrepresentsthetrajectoryofaparticlestartingwithpositionandve-
locity(
x,v
)attime
t
=
s
.
TheODE(1.1.9)iswellposedforinstanceif
1
,

1
,

α
(
v
)

W
loc
(
R
d
)
,F

W
loc
(
R
+
×
R
2
d
)
,
(1.1.10)
|
α
|
+
|
F
|≤
C
(
t
)(1+
|
x
|
+
|
v
|
)
,
thankstoCauchy-LipschitzTheorem.Weakerassumptionsarehowever
enough,
W
l
1
o,c
1
andboundeddivergencein[16]oreven
BV
loc
in[1],butwill
notberequiredhere.
Under(1.1.10),(1.1.8)isalsowellposed
Theorem1.1.3
Assume
(1.1.10)
and
r
v

F

L

(
R
+
×
R
2
d
)
,foranymea-
surevaluedinitialdata
f
0

M
1
(
R
2
d
)
,thereexistsaunique
f
includedin
L

([0
,T
]
,M
1
(
R
d
))
solutionto
(1.1.8)
inthesenseofdistributionandsat-
isfying
(1.1.3)
.Itisgivenby
f
(
t,x,v
)=
f
0
(
X
(0
,t,x,v
)
,V
(0
,t,x,v
))
.

If
F
and
α
areregularenough(
C

),thesametheoremholdsfor
f
0
a
distribution.
Thistheoremimpliesmanypropertieson
f
,forexample

8

CHAPTER1.KINETICEQUATIONS:BASICTOOLS

Proposition1.1.1
(
i
)
f

0
ifandonlyif
f

0
.
(
ii
)
If
f
0

L

(
R
2
d
)
then
f

L

(
R
+

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents