Asymptotic Behavior of a Discrete Maturity Structured System of Hematopoietic Stem Cell

icon

19

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait
icon

19

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait
Asymptotic Behavior of a Discrete Maturity Structured System of Hematopoietic Stem Cell Dynamics with Several Delays? Mostafa Adimy a,b, Fabien Crauste c, Abderrahim El Abdllaoui a Year 2007 a Laboratoire de Mathematiques Appliquees CNRS UMR 5142 Universite de Pau et des Pays de l'Adour 64000 Pau, France b ANUBIS Team, INRIA Futurs c Universite de Lyon, Universite Lyon1 CNRS UMR 5208 Institut Camille Jordan Batiment du Doyen Jean Braconnier 43 Boulevard du 11 novembre 1918 F - 69200 Villeurbanne Cedex, France Abstract. We propose and analyze a mathematical model of hematopoietic stem cell dy- namics. This model takes into account a finite number of stages in blood production, char- acterized by cell maturity levels, which enhance the difference, in the hematopoiesis process, between dividing cells that differentiate (by going to the next stage) and dividing cells that keep the same maturity level (by staying in the same stage). It is described by a system of n nonlinear differential equations with n delays. We study some fundamental properties of the solutions, such as boundedness and positivity, and we investigate the existence of steady states. We determine some conditions for the local asymptotic stability of the trivial steady state, and obtain a sufficient condition for its global asymptotic stability by using a Lyapunov functional. Then we prove the instability of axial steady states. We study the asymptotic behavior of the unique positive steady state and obtain the existence of a stability area de- pending on all the time delays.

  • maturity compartment

  • hematopoietic stem

  • cells always

  • stem cells produce

  • universite lyon1

  • introduction rate

  • stem cell

  • ?i ≤


Voir Alternate Text

Publié par

Nombre de lectures

14

Langue

English

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text