APPENDIX C SOME IDENTITIES SATISFIED BY THE COULOMB POTENTIAL

icon

3

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

3

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

APPENDIX C : SOME IDENTITIES SATISFIED BY THE COULOMB POTENTIAL In this appendix, we use the notations of chapter 2. We shall give several formulas which hold for Landau's collisional operator Q(f, f) with a Coulomb potential. We assume that f is smooth and rapidly decreasing, so as to allow all formal manipulations. In this case, the matrix aij is given by (1) aij(v) = ( ?ij ? vivj |v|2 ) 1 |v| . Therefore, c = ∑ ij ∂ijaij = ?8pi?, where ? is the Dirac mass at the origin, and hence c = c ? f = ?8pif . Thus, the Landau operator can be rewritten as (2) Q(f, f) = aij∂ijf + 8pif 2. As pointed out to us to by Desjardins, the matrix aij can be com- puted “eplicitly” by the use of the so-called Riesz transform. Let us define f?(?) = ∫ R3 e?iv·?f(v) dv, Rij = ?∂ij(?∆)?1, so that in Fourier space, Rij is given by R?ij(?) = ?i?j |?|2 , and Rij satisfies the identities ∑ i Rii = I, ∂ij = Rij∆ = ∆Rij, ∑ ij Rij∂ij = ∆.

  • ?2 ∫

  • another formal

  • dirac function

  • fourier transform

  • r6 aij

  • lan- dau operator

  • r3 cf

  • ij ∂ijaij

  • physically rel- evant


Voir icon arrow

Publié par

Langue

English

APPENDIX C : SOME IDENTITIES SATISFIED BY THE COULOMB POTENTIAL
In this appendix, we use the notations of chapter 2.We shall give several formulas which hold for Landau’s collisional operatorQ(f, f) with a Coulomb potential.We assume thatfis smooth and rapidly decreasing, so as to allow all formal manipulations. In this case, the matrixaijis given by   vivj1 (1)aij(v) =ij. 2 |v| |v| P Therefore,c=ijaij=8 , whereis the Dirac mass at the ij origin, and hencec=cf=8 f. Thus,the Landau operator can be rewritten as 2 (2)Q(f, f) =aijijf+ 8. f As pointed out to us to by Desjardins, the matrixaijcan be com-puted “eplicitly” by the use of the so-called Riesz transform.Let us de ne Z iv b f() =e f(v)dv, 3 R 1 Rij=ij(), so that in Fourier space,Rijis given by ij b Rij() =, 2 || andRijdiehtse sitasestitien X X Rii=I, ∂ij=Rij =Rij, Rijij= . i ij It turns out that ij abij() = 8 , 4 || so that 1 (3)aij=aijf=8 Rijf. Hence the equation (2) can be rewritten as (4)    1 21 2 Q(f, f) = 8(Rijf)ijf+f= 8(Rijf)(Rijf) +f . 1
Voir icon more
Alternate Text