3
pages
Français
Documents
2001
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
3
pages
Français
Documents
2001
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
′[BaccalauréatF11-F11 Métropolejuin2001\
Durée:2heures Coefficient:2
EXERCICE 8points
Onconsidèrelafonction f définiesurRpar:
¡ ¢
x xf(x)=e 4−e .
′Ondésignepar f lafonctiondérivéede f.Ondonneci-dessouslacourbereprésen-
tativeC de la fonction f dans le repère orthogonal d’unités graphiques 2 cm pour
lesabscisseset1cmpourlesordonnées.
5
4 B
3
A
2
1
1
C
E0
-4 -3 -2 -1 0 1 2O 1
-1
-2
-3
-4
-5
-6
-7
1. a. Étudierlalimitedelafonction f en+∞.
b. Étudier la limite de la fonction f en−∞. Interpréter graphiquement le
résultatobtenu.
′2. a. Calculer f (x).
b. DétermineruneéquationdelatangenteàlacourbeC aupointAd’abs-
cisse0.
c. LatangenteàlacourbeC aupointBestparallèleàl’axedesabscisses.
CalculerlescoordonnéesdeB.
′d. Étudier lesigne de f (x)surRpuis dresserle tableau devariations dela
fonction f.′BaccalauréatF11-F11 A.P.M.E.P.
3. a. Calculer les coordonnéesdupoint d’intersection EdelacourbeC etde
l’axedesabscisses.
b. Par lecture graphique, déterminer le nombre de solutions de l’équation
f(x)=1puisencadrerchaquesolutionpardeuxentiersconsécutifs.
PROBLÈME 12points
5
C
4
IOnconsidèreunefonction f dé-
finiesurl’intervalle ]0;+∞[par: 3
2
f(x)=ax+b+ 2
x
où a et b désignent deux
1nombresréels. 1
La courbe C ci-contre est la
courbereprésentative dela fonc- 0 1/2
tion f dans un repère orthonor- -1 O 0 1 2 3 4 51
mald’unitégraphique1cm.
-1
-2
′ ′1. a. Ondésigne par f la fonction dérivée delafonction f.Calculer f (x)en
fonctionde a et x.
à !
1
′b. Sachantque f =0et f (1)=0,déterminerlesvaleursdesréels a etb.
2
2. Parlecturegraphique:
a. déterminerlavaleurentièrede f(2).
b. déterminerlesignede f(x)surl’intervalle ]0;+∞[.
3. Onpose a=2etb=−5.
a. MontrerqueladroiteàΔd’équation y=2x−5estasymptoteàlacourbe
C en+∞.
b. ÉtudierlapositionrelativedelacourbeC etdeladroiteΔsurl’intervalle
]0;+∞[.
IIOnconsidèrelafonction g définiesur]0;+∞[par:
2g(x)=x −5x+2lnx.
³ ´→− →−
OnappelleΓsacourbereprésentativedansunrepèreorthonormal O, ı , d’unité
graphique2cm.
1. a. Déterminerlalimitedelafonction g en0.Quepeut-onendéduirepour
lacourbeΓ?
à !
lnx
b. Vérifierque g(x)= x x−5+2 puis déterminer lalimite dela fonc-
x
tion g en+∞.
Métropole 2 juin2001′BaccalauréatF11-F11 A.P.M.E.P.
2. a. Montrer que la fonction g est une primitive de la fonction f sur l’inter-
valle ]0 ; +∞[. En déduire les variations de la fonction g sur l’intervalle
]0;+∞[.
b. Donner les valeurs exactes de g(1) et de g(2) puis les valeurs décimales
−1approchéesà10 prèspardéfaut.
c. Dresserletableaudevariationsdelafonction g.
3. a. Recopieretcompléterletableauàl’aidedesvaleursdécimalesarrondies
−1à10 de g(x).
x 0,2 1 2,5 3,5 4 5
g(x)
b. Tracer les tangentes à la courbe parallèles à l’axe des abscisses puis la³ ´→− →−
courbeΓdanslerepère O, ı , .
Métropole 3 juin2001